These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33876866)
1. Trypsinogen and chymotrypsinogen: the mysterious hyper-reactivity of selected cysteines is still present after their divergent evolution. Cattani G; Bocedi A; Gambardella G; Iavarone F; Boroumand M; Castagnola M; Ricci G FEBS J; 2021 Oct; 288(20):6003-6018. PubMed ID: 33876866 [TBL] [Abstract][Full Text] [Related]
2. Ultra-rapid glutathionylation of chymotrypsinogen in its molten globule-like conformation: A comparison to archaeal proteins. Bocedi A; Gambardella G; Cattani G; Bartolucci S; Limauro D; Pedone E; Iavarone F; Castagnola M; Ricci G Sci Rep; 2020 Jun; 10(1):8943. PubMed ID: 32488029 [TBL] [Abstract][Full Text] [Related]
3. The unusual properties of lactoferrin during its nascent phase. Notari S; Gambardella G; Vincenzoni F; Desiderio C; Castagnola M; Bocedi A; Ricci G Sci Rep; 2023 Aug; 13(1):14113. PubMed ID: 37644064 [TBL] [Abstract][Full Text] [Related]
4. Ultra-Rapid Glutathionylation of Ribonuclease: Is this the Real Incipit of its Oxidative Folding? Bocedi A; Cattani G; Gambardella G; Ticconi S; Cozzolino F; Di Fusco O; Pucci P; Ricci G Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31683668 [TBL] [Abstract][Full Text] [Related]
5. New Factors Enhancing the Reactivity of Cysteines in Molten Globule-Like Structures. Gambardella G; Cattani G; Bocedi A; Ricci G Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32971812 [TBL] [Abstract][Full Text] [Related]
6. The extreme hyper-reactivity of selected cysteines drives hierarchical disulfide bond formation in serum albumin. Bocedi A; Fabrini R; Pedersen JZ; Federici G; Iavarone F; Martelli C; Castagnola M; Ricci G FEBS J; 2016 Nov; 283(22):4113-4127. PubMed ID: 27685835 [TBL] [Abstract][Full Text] [Related]
7. The extreme hyper-reactivity of Cys94 in lysozyme avoids its amorphous aggregation. Bocedi A; Cattani G; Martelli C; Cozzolino F; Castagnola M; Pucci P; Ricci G Sci Rep; 2018 Oct; 8(1):16050. PubMed ID: 30375487 [TBL] [Abstract][Full Text] [Related]
8. Expression of rat chymotrypsinogen in yeast: a study on the structural and functional significance of the chymotrypsinogen propeptide. Venekei I; Gráf L; Rutter WJ FEBS Lett; 1996 Jan; 379(2):139-42. PubMed ID: 8635579 [TBL] [Abstract][Full Text] [Related]
9. Prospective type 1 and type 2 disulfides of Keap1 protein. Holland R; Hawkins AE; Eggler AL; Mesecar AD; Fabris D; Fishbein JC Chem Res Toxicol; 2008 Oct; 21(10):2051-60. PubMed ID: 18729328 [TBL] [Abstract][Full Text] [Related]
10. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. Aracena-Parks P; Goonasekera SA; Gilman CP; Dirksen RT; Hidalgo C; Hamilton SL J Biol Chem; 2006 Dec; 281(52):40354-68. PubMed ID: 17071618 [TBL] [Abstract][Full Text] [Related]
11. Thiol-based redox signalling: rust never sleeps. Wouters MA; Iismaa S; Fan SW; Haworth NL Int J Biochem Cell Biol; 2011 Aug; 43(8):1079-85. PubMed ID: 21513814 [TBL] [Abstract][Full Text] [Related]
12. Catalysis of thiol/disulfide exchange. Glutaredoxin 1 and protein-disulfide isomerase use different mechanisms to enhance oxidase and reductase activities. Xiao R; Lundström-Ljung J; Holmgren A; Gilbert HF J Biol Chem; 2005 Jun; 280(22):21099-106. PubMed ID: 15814611 [TBL] [Abstract][Full Text] [Related]
13. Unusual fucoidin-binding properties of chymotrypsinogen and trypsinogen. Jones R Biochim Biophys Acta; 1990 Feb; 1037(2):227-32. PubMed ID: 2106345 [TBL] [Abstract][Full Text] [Related]
14. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE. Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644 [TBL] [Abstract][Full Text] [Related]
15. Influence of protein conformation on disulfide bond formation in the oxidative folding of ribonuclease T1. Frech C; Schmid FX J Mol Biol; 1995 Aug; 251(1):135-49. PubMed ID: 7643382 [TBL] [Abstract][Full Text] [Related]
16. Refolding of serine proteinases. Light A; Duda CT; Odorzynski TW; Moore WG J Cell Biochem; 1986; 31(1):19-26. PubMed ID: 3522609 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of bovine trypsinogen and chymotrypsinogen by diisopropylphosphorofluoridate. Morgan PH; Robinson NC; Walsh KA; Neurath H Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3312-6. PubMed ID: 4508324 [TBL] [Abstract][Full Text] [Related]
18. The trypsinogen and chymotrypsinogen contents of the pancreas during acute experimental pancreatitis of the rat. Huttunen R Scand J Gastroenterol; 1975; 10(2):177-80. PubMed ID: 1124351 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of formation and reactivity of the persulfide in the one-cysteine peroxiredoxin from Cuevasanta E; Reyes AM; Zeida A; Mastrogiovanni M; De Armas MI; Radi R; Alvarez B; Trujillo M J Biol Chem; 2019 Sep; 294(37):13593-13605. PubMed ID: 31311857 [TBL] [Abstract][Full Text] [Related]
20. Redox regulation of a soybean tyrosine-specific protein phosphatase. Dixon DP; Fordham-Skelton AP; Edwards R Biochemistry; 2005 May; 44(21):7696-703. PubMed ID: 15909984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]