BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33876951)

  • 41. Genetic correction of concurrent α- and β-thalassemia patient-derived pluripotent stem cells by the CRISPR-Cas9 technology.
    Li L; Yi H; Liu Z; Long P; Pan T; Huang Y; Li Y; Li Q; Ma Y
    Stem Cell Res Ther; 2022 Mar; 13(1):102. PubMed ID: 35255977
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of epigenetic mechanisms on therapeutic approaches of hemoglobinopathies.
    Costa D; Capuano M; Sommese L; Napoli C
    Blood Cells Mol Dis; 2015 Aug; 55(2):95-100. PubMed ID: 26142322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Advances in stem cell transplantation and gene therapy in the β-hemoglobinopathies.
    Payen E; Leboulch P
    Hematology Am Soc Hematol Educ Program; 2012; 2012():276-83. PubMed ID: 23233592
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient gene correction of an aberrant splice site in β-thalassaemia iPSCs by CRISPR/Cas9 and single-strand oligodeoxynucleotides.
    Xiong Z; Xie Y; Yang Y; Xue Y; Wang D; Lin S; Chen D; Lu D; He L; Song B; Yang Y; Sun X
    J Cell Mol Med; 2019 Dec; 23(12):8046-8057. PubMed ID: 31631510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas9-mediated β-globin gene knockout in rabbits recapitulates human β-thalassemia.
    Yang Y; Kang X; Hu S; Chen B; Xie Y; Song B; Zhang Q; Wu H; Ou Z; Xian Y; Fan Y; Li X; Lai L; Sun X
    J Biol Chem; 2021; 296():100464. PubMed ID: 33639162
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hematopoietic-Stem-Cell-Targeted Gene-Addition and Gene-Editing Strategies for β-hemoglobinopathies.
    Drysdale CM; Nassehi T; Gamer J; Yapundich M; Tisdale JF; Uchida N
    Cell Stem Cell; 2021 Feb; 28(2):191-208. PubMed ID: 33545079
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recombinant AAV2-mediated β-globin expression in human fetal hematopoietic cells from the aborted fetuses with β-thalassemia major.
    Tian J; Wang F; Xue JF; Zhao F; Song LJ; Tan MQ
    Int J Hematol; 2011 Jun; 93(6):691-699. PubMed ID: 21617888
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A natural regulatory mutation in the proximal promoter elevates fetal
    Martyn GE; Wienert B; Kurita R; Nakamura Y; Quinlan KGR; Crossley M
    Blood; 2019 Feb; 133(8):852-856. PubMed ID: 30617196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system.
    Wattanapanitch M; Damkham N; Potirat P; Trakarnsanga K; Janan M; U-Pratya Y; Kheolamai P; Klincumhom N; Issaragrisil S
    Stem Cell Res Ther; 2018 Feb; 9(1):46. PubMed ID: 29482624
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Customizing the genome as therapy for the β-hemoglobinopathies.
    Canver MC; Orkin SH
    Blood; 2016 May; 127(21):2536-45. PubMed ID: 27053533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Supramolecular nanosubstrate-mediated delivery system enables CRISPR-Cas9 knockin of hemoglobin beta gene for hemoglobinopathies.
    Yang P; Chou SJ; Li J; Hui W; Liu W; Sun N; Zhang RY; Zhu Y; Tsai ML; Lai HI; Smalley M; Zhang X; Chen J; Romero Z; Liu D; Ke Z; Zou C; Lee CF; Jonas SJ; Ban Q; Weiss PS; Kohn DB; Chen K; Chiou SH; Tseng HR
    Sci Adv; 2020 Oct; 6(43):. PubMed ID: 33097539
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic disruption of the KLF1 gene to overexpress the γ-globin gene using the CRISPR/Cas9 system.
    Shariati L; Khanahmad H; Salehi M; Hejazi Z; Rahimmanesh I; Tabatabaiefar MA; Modarressi MH
    J Gene Med; 2016 Oct; 18(10):294-301. PubMed ID: 27668420
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene Therapy for β-Hemoglobinopathies.
    Cavazzana M; Antoniani C; Miccio A
    Mol Ther; 2017 May; 25(5):1142-1154. PubMed ID: 28377044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A New Era for Hemoglobinopathies: More Than One Curative Option.
    Psatha N; Papayanni PG; Yannaki E
    Curr Gene Ther; 2017; 17(5):364-378. PubMed ID: 29357790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A combined approach for β-thalassemia based on gene therapy-mediated adult hemoglobin (HbA) production and fetal hemoglobin (HbF) induction.
    Zuccato C; Breda L; Salvatori F; Breveglieri G; Gardenghi S; Bianchi N; Brognara E; Lampronti I; Borgatti M; Rivella S; Gambari R
    Ann Hematol; 2012 Aug; 91(8):1201-13. PubMed ID: 22460946
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene therapy for hemoglobinopathies: the state of the field and the future.
    Chandrakasan S; Malik P
    Hematol Oncol Clin North Am; 2014 Apr; 28(2):199-216. PubMed ID: 24589262
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing.
    Fontana L; Alahouzou Z; Miccio A; Antoniou P
    Genes (Basel); 2023 Feb; 14(3):. PubMed ID: 36980849
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia.
    Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S
    N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hemoglobin disorders: lentiviral gene therapy in the starting blocks to enter clinical practice.
    Sii-Felice K; Giorgi M; Leboulch P; Payen E
    Exp Hematol; 2018 Aug; 64():12-32. PubMed ID: 29807062
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Manipulation of Developmental Gamma-Globin Gene Expression: an Approach for Healing Hemoglobinopathies.
    Venkatesan V; Srinivasan S; Babu P; Thangavel S
    Mol Cell Biol; 2020 Dec; 41(1):. PubMed ID: 33077498
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.