BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 33876963)

  • 1. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications.
    Fujita H; Fujita T; Fujii H
    CRISPR J; 2021 Apr; 4(2):290-300. PubMed ID: 33876963
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins.
    Fujii H; Fujita T
    Int J Mol Sci; 2015 Sep; 16(9):21802-12. PubMed ID: 26370991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins.
    Fujita T; Yuno M; Fujii H
    Genes Cells; 2016 Apr; 21(4):370-7. PubMed ID: 26848818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An enChIP system for the analysis of bacterial genome functions.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Jun; 11(1):387. PubMed ID: 29898790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Specific Genomic Regions and Identification of Associated Molecules by enChIP.
    Fujita T; Fujii H
    J Vis Exp; 2016 Jan; (107):e53478. PubMed ID: 26862718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CAPTURE: In Situ Analysis of Chromatin Composition of Endogenous Genomic Loci by Biotinylated dCas9.
    Liu X; Zhang Y; Chen Y; Li M; Shao Z; Zhang MQ; Xu J
    Curr Protoc Mol Biol; 2018 Jul; 123(1):e64. PubMed ID: 29927077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical Analysis of Genome Functions Using Locus-Specific Chromatin Immunoprecipitation Technologies.
    Fujita T; Fujii H
    Gene Regul Syst Bio; 2016; 10(Suppl 1):1-9. PubMed ID: 26819551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of specific DNA species using the CRISPR system.
    Fujita T; Fujii H
    Biol Methods Protoc; 2019; 4(1):bpz008. PubMed ID: 32395626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. enChIP-Seq Analyzer: A Software Program to Analyze and Interpret enChIP-Seq Data for the Detection of Physical Interactions between Genomic Regions.
    Sarudate A; Fujita T; Nakayama T; Fujii H
    Genes (Basel); 2022 Mar; 13(3):. PubMed ID: 35328026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of local chromatin interactions using a combined CRISPR and peroxidase APEX2 system.
    Qiu W; Xu Z; Zhang M; Zhang D; Fan H; Li T; Wang Q; Liu P; Zhu Z; Du D; Tan M; Wen B; Liu Y
    Nucleic Acids Res; 2019 May; 47(9):e52. PubMed ID: 30805613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.
    Fujita T; Fujii H
    Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Progress and Challenges for Live-cell Imaging of Genomic Loci Using CRISPR-based Platforms.
    Wu X; Mao S; Ying Y; Krueger CJ; Chen AK
    Genomics Proteomics Bioinformatics; 2019 Apr; 17(2):119-128. PubMed ID: 30710789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging genomic elements in living cells using CRISPR/Cas9.
    Chen B; Huang B
    Methods Enzymol; 2014; 546():337-54. PubMed ID: 25398348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diving into marine genomics with CRISPR/Cas9 systems.
    Momose T; Concordet JP
    Mar Genomics; 2016 Dec; 30():55-65. PubMed ID: 27742404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application and prospects of CRISPR/Cas9-based methods to trace defined genomic sequences in living and fixed plant cells.
    Khosravi S; Ishii T; Dreissig S; Houben A
    Chromosome Res; 2020 Mar; 28(1):7-17. PubMed ID: 31792795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of proteins associated with an IFNγ-responsive promoter by a retroviral expression system for enChIP using CRISPR.
    Fujita T; Fujii H
    PLoS One; 2014; 9(7):e103084. PubMed ID: 25051498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells.
    Daer RM; Cutts JP; Brafman DA; Haynes KA
    ACS Synth Biol; 2017 Mar; 6(3):428-438. PubMed ID: 27783893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.