BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 33877414)

  • 1. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts.
    Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J
    Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.
    Wang L; Mao J; Zhao H; Li M; Wei Q; Zhou Y; Shao H
    J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1249-60. PubMed ID: 27337959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignocellulose Degradation Efficiency of
    Wang Q; Xiao T; Juan J; Qian W; Zhang J; Chen H; Shen X; Huang J
    J Agric Food Chem; 2023 Jul; 71(28):10607-10615. PubMed ID: 37417743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production.
    Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ
    Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms.
    Kertesz MA; Thai M
    Appl Microbiol Biotechnol; 2018 Feb; 102(4):1639-1650. PubMed ID: 29362825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial ecology of the Agaricus bisporus mushroom cropping process.
    McGee CF
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1075-1083. PubMed ID: 29222576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial community diversity, lignocellulose components, and histological changes in composting using agricultural straws for
    Song T; Shen Y; Jin Q; Feng W; Fan L; Cao G; Cai W
    PeerJ; 2021; 9():e10452. PubMed ID: 33614258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates.
    Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR
    Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrogen balance and supply in Australasian mushroom composts.
    Noble R; Thai M; Kertesz MA
    Appl Microbiol Biotechnol; 2024 Jan; 108(1):151. PubMed ID: 38240861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps.
    Vieira FR; Pecchia JA
    Microb Ecol; 2022 Jul; 84(1):20-32. PubMed ID: 34383127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accumulation of HT-2 toxin from contaminated mushroom compost by edible
    Varga E; Soros C; Fodor P; Cserháti M; Sebők R; Kriszt B; Geosel A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Apr; 39(4):803-816. PubMed ID: 35394401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity.
    Stoknes K; Beyer DM; Norgaard E
    J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of Agaricus subrufescens during the first two weeks of cultivation.
    Farnet AM; Qasemian L; Peter-Valence F; Ruaudel F; Savoie JM; Ferré E
    Bioresour Technol; 2013 Mar; 131():266-73. PubMed ID: 23357087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus.
    Vos AM; Jurak E; de Gijsel P; Ohm RA; Henrissat B; Lugones LG; Kabel MA; Wösten HAB
    PLoS One; 2018; 13(7):e0201090. PubMed ID: 30040824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation-driven lignin removal by Agaricus bisporus from wheat straw-based compost at industrial scale.
    Duran K; Miebach J; van Erven G; Baars JJP; Comans RNJ; Kuyper TW; Kabel MA
    Int J Biol Macromol; 2023 Aug; 246():125575. PubMed ID: 37385314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.
    Jurak E; Punt AM; Arts W; Kabel MA; Gruppen H
    PLoS One; 2015; 10(10):e0138909. PubMed ID: 26436656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation.
    Vieira FR; Pecchia JA
    Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating microbial activities in compost using mushroom (Agaricus bisporus) cultivation as an experimental system.
    Adams JD; Frostick LE
    Bioresour Technol; 2008 Mar; 99(5):1097-102. PubMed ID: 17478092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus.
    Šantrić L; Potočnik I; Radivojević L; Umiljendić JG; Rekanović E; Duduk B; Milijašević-Marčić S
    J Environ Sci Health B; 2018; 53(10):677-684. PubMed ID: 29775426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomics analysis of the effects of
    Chang W; Feng W; Yang Y; Shen Y; Song T; Li Y; Cai W
    PeerJ; 2022; 10():e14426. PubMed ID: 36523457
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.