BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 33877414)

  • 21. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increasing the value of Phragmites australis straw in a sustainable integrated agriculture model (SIAM) comprising edible mushroom cultivation and spent mushroom substrate compost.
    Ye D; Hu Q; Bai X; Zhang W; Guo H
    Sci Total Environ; 2023 Apr; 869():161807. PubMed ID: 36707006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oyster mushroom cultivation with rice and wheat straw.
    Zhang R; Li X; Fadel JG
    Bioresour Technol; 2002 May; 82(3):277-84. PubMed ID: 11991077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fungal community assembly during a high-temperature composting under different pasteurization regimes used to elaborate the Agaricus bisporus substrate.
    Rocha Vieira F; Andrew Pecchia J
    Fungal Biol; 2021 Oct; 125(10):826-833. PubMed ID: 34537178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of spent mushroom compost tea on mycelial growth and yield of button mushroom (Agaricus bisporus).
    Gea FJ; Santos M; Diánez F; Tello JC; Navarro MJ
    World J Microbiol Biotechnol; 2012 Aug; 28(8):2765-9. PubMed ID: 22806203
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Straw-based compost cultivation disproportionally contributes to the environmental persistence of antibiotic resistance from raw cattle manure to organic vegetables.
    Gao Y; Liu J; Fang Y; Xu X; Wang F; Tang Y; Yin D; Cookson AL; Zhu W; Mao S; Zhong R
    Microbiol Res; 2024 Jan; 278():127540. PubMed ID: 37976735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Imidacloprid dissipation, metabolism and accumulation in Agaricus bisporus fruits, casing soil and compost and dietary risk assessment.
    Zhang Q; Wang X; Rao Q; Chen S; Song W
    Chemosphere; 2020 Sep; 254():126837. PubMed ID: 32339803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars.
    Llarena-Hernández CR; Largeteau ML; Ferrer N; Regnault-Roger C; Savoie JM
    J Sci Food Agric; 2014 Jan; 94(1):77-84. PubMed ID: 23633302
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of microbial community and enzyme activities during preparation of Agaricus bisporus compost substrate.
    Thai M; Safianowicz K; Bell TL; Kertesz MA
    ISME Commun; 2022 Sep; 2(1):88. PubMed ID: 37938292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical and ultrastructural studies of lignocellulose biodegradation during Agaricus bisporus cultivation.
    Zhang R; Wang H; Liu Q; Ng T
    Biotechnol Appl Biochem; 2014; 61(2):208-16. PubMed ID: 24033911
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.
    McGee CF; Byrne H; Irvine A; Wilson J
    Mycologia; 2017; 109(3):475-484. PubMed ID: 28759322
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of straw types and nitrogen sources on mushroom composting emissions and compost productivity.
    Noble R; Hobbs PJ; Mead A; Dobrovin-Pennington A
    J Ind Microbiol Biotechnol; 2002 Sep; 29(3):99-110. PubMed ID: 12242630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Straw Composts with Composite Inoculants and Their Effects on Soil Carbon and Nitrogen Contents and Enzyme Activity].
    Nie WH; Qi ZP; Feng HW; Sun YJ; Zhi YE; Zhang JZ; Zhang D
    Huan Jing Ke Xue; 2017 Feb; 38(2):783-791. PubMed ID: 29964538
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation.
    Kabel MA; Jurak E; Mäkelä MR; de Vries RP
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4363-4369. PubMed ID: 28466110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lignin degradation by Agaricus bisporus accounts for a 30% increase in bioavailable holocellulose during cultivation on compost.
    ten Have R; Wijngaard H; Ariës-Kronenburg NA; Straatsma G; Schaap PJ
    J Agric Food Chem; 2003 Apr; 51(8):2242-5. PubMed ID: 12670164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of the chemical composition and productivity of composts for the cultivation of Agaricus bisporus strains.
    de Andrade MC; de Jesus JP; Vieira FR; Viana SR; Spoto MH; de Almeida Minhoni MT
    Braz J Microbiol; 2013 Dec; 44(4):1139-46. PubMed ID: 24688503
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compositional Changes in Compost during Composting and Growth of Agaricus bisporus.
    Iiyama K; Stone BA; Macauley BJ
    Appl Environ Microbiol; 1994 May; 60(5):1538-46. PubMed ID: 16349255
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical degradation of wheat straw by the in-vessel and windrow methods of mushroom compost production.
    Lyons GA; McCall RD; Sharma HS
    Can J Microbiol; 2000 Sep; 46(9):817-25. PubMed ID: 11006842
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accumulation of recalcitrant xylan in mushroom-compost is due to a lack of xylan substituent removing enzyme activities of Agaricus bisporus.
    Jurak E; Patyshakuliyeva A; Kapsokalyvas D; Xing L; van Zandvoort MA; de Vries RP; Gruppen H; Kabel MA
    Carbohydr Polym; 2015 Nov; 132():359-68. PubMed ID: 26256360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.
    Jurak E; Kabel MA; Gruppen H
    Carbohydr Polym; 2014 Jan; 101():281-8. PubMed ID: 24299775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.