These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33877474)
21. Modelling the effects of pre-exposure and post-exposure vaccines in tuberculosis control. Bhunu CP; Garira W; Mukandavire Z; Magombedze G J Theor Biol; 2008 Oct; 254(3):633-49. PubMed ID: 18644386 [TBL] [Abstract][Full Text] [Related]
22. Global stability in a tuberculosis model of imperfect treatment with age-dependent latency and relapse. Ren S Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1337-1360. PubMed ID: 29161864 [TBL] [Abstract][Full Text] [Related]
23. Dynamical Analysis of an SEIT Epidemic Model with Application to Ebola Virus Transmission in Guinea. Li Z; Teng Z; Feng X; Li Y; Zhang H Comput Math Methods Med; 2015; 2015():582625. PubMed ID: 26246849 [TBL] [Abstract][Full Text] [Related]
24. Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Lu JN; Zhang XG Math Biosci Eng; 2019 Apr; 16(4):2973-2989. PubMed ID: 31137246 [TBL] [Abstract][Full Text] [Related]
25. Analysis of an SEIR epidemic model with saturated incidence and saturated treatment function. Zhang J; Jia J; Song X ScientificWorldJournal; 2014; 2014():910421. PubMed ID: 25202740 [TBL] [Abstract][Full Text] [Related]
26. Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection. Cao H; Zhou Y; Ma Z Math Biosci Eng; 2013; 10(5-6):1399-417. PubMed ID: 24245622 [TBL] [Abstract][Full Text] [Related]
27. Dynamic behaviors of a modified SIR model in epidemic diseases using nonlinear incidence and recovery rates. Li GH; Zhang YX PLoS One; 2017; 12(4):e0175789. PubMed ID: 28426775 [TBL] [Abstract][Full Text] [Related]
28. A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates. Goel K; Nilam Theory Biosci; 2019 Nov; 138(2):203-213. PubMed ID: 30666514 [TBL] [Abstract][Full Text] [Related]
29. Assessing vaccine efficacy for infectious diseases with variable immunity using a mathematical model. Al-Arydah M Sci Rep; 2024 Aug; 14(1):18572. PubMed ID: 39127773 [TBL] [Abstract][Full Text] [Related]
30. SIS and SIR Epidemic Models Under Virtual Dispersal. Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419 [TBL] [Abstract][Full Text] [Related]
31. The effect of incidence function in backward bifurcation for malaria model with temporary immunity. Roop-O P; Chinviriyasit W; Chinviriyasit S Math Biosci; 2015 Jul; 265():47-64. PubMed ID: 25916889 [TBL] [Abstract][Full Text] [Related]
32. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Kuniya T; Muroya Y; Enatsu Y Math Biosci Eng; 2014 Dec; 11(6):1375-93. PubMed ID: 25365599 [TBL] [Abstract][Full Text] [Related]
33. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Xu J; Zhou Y Math Biosci Eng; 2015 Oct; 12(5):1083-106. PubMed ID: 26280186 [TBL] [Abstract][Full Text] [Related]
34. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
35. Practical aspects of backward bifurcation in a mathematical model for tuberculosis. Gerberry DJ J Theor Biol; 2016 Jan; 388():15-36. PubMed ID: 26493359 [TBL] [Abstract][Full Text] [Related]
36. Co-dynamics of COVID-19 and TB with COVID-19 vaccination and exogenous reinfection for TB: An optimal control application. Kifle ZS; Obsu LL Infect Dis Model; 2023 Jun; 8(2):574-602. PubMed ID: 37287990 [TBL] [Abstract][Full Text] [Related]
37. Global analysis of an age-structured tuberculosis model with an application to Jiangsu, China. Jing S; Xue L; Wang H; Peng Z J Math Biol; 2024 Apr; 88(5):52. PubMed ID: 38563991 [TBL] [Abstract][Full Text] [Related]
38. A TB model: Is disease eradication possible in India? Pandey S; Venturino E Math Biosci Eng; 2018 Feb; 15(1):233-254. PubMed ID: 29161834 [TBL] [Abstract][Full Text] [Related]
39. Optimal vaccination ages for emerging infectious diseases under limited vaccine supply. Ai M; Wang W J Math Biol; 2023 Dec; 88(1):13. PubMed ID: 38135859 [TBL] [Abstract][Full Text] [Related]
40. Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis. Nwankwo A; Okuonghae D Bull Math Biol; 2018 Mar; 80(3):437-492. PubMed ID: 29282597 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]