BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33877610)

  • 21. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex.
    Tondnevis F; Weiss TM; Matsui T; Bloom LB; McKenna R
    J Struct Biol; 2016 Jun; 194(3):272-81. PubMed ID: 26968362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps.
    Newcomb ESP; Douma LG; Morris LA; Bloom LB
    Nucleic Acids Res; 2022 Dec; 50(22):12872-12884. PubMed ID: 36511874
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A single subunit directs the assembly of the Escherichia coli DNA sliding clamp loader.
    Park AY; Jergic S; Politis A; Ruotolo BT; Hirshberg D; Jessop LL; Beck JL; Barsky D; O'Donnell M; Dixon NE; Robinson CV
    Structure; 2010 Mar; 18(3):285-92. PubMed ID: 20223211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Association states of the transcription activator protein NtrC from E. coli determined by analytical ultracentrifugation.
    Rippe K; Mücke N; Schulz A
    J Mol Biol; 1998 May; 278(5):915-33. PubMed ID: 9600853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-molecule studies reveal the function of a third polymerase in the replisome.
    Georgescu RE; Kurth I; O'Donnell ME
    Nat Struct Mol Biol; 2011 Dec; 19(1):113-6. PubMed ID: 22157955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactions of the Escherichia coli primosomal PriB protein with the single-stranded DNA. Stoichiometries, intrinsic affinities, cooperativities, and base specificities.
    Szymanski MR; Jezewska MJ; Bujalowski W
    J Mol Biol; 2010 Apr; 398(1):8-25. PubMed ID: 20156448
    [TBL] [Abstract][Full Text] [Related]  

  • 27. M. tuberculosis sliding β-clamp does not interact directly with the NAD+-dependent DNA ligase.
    Kukshal V; Khanam T; Chopra D; Singh N; Sanyal S; Ramachandran R
    PLoS One; 2012; 7(4):e35702. PubMed ID: 22545130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. ssb gene duplication restores the viability of ΔholC and ΔholD Escherichia coli mutants.
    Duigou S; Silvain M; Viguera E; Michel B
    PLoS Genet; 2014 Oct; 10(10):e1004719. PubMed ID: 25329071
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamics of loading the Escherichia coli DNA polymerase processivity clamp.
    Bloom LB
    Crit Rev Biochem Mol Biol; 2006; 41(3):179-208. PubMed ID: 16760017
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins?
    Shinn MK; Kozlov AG; Nguyen B; Bujalowski WM; Lohman TM
    Nucleic Acids Res; 2019 Sep; 47(16):8581-8594. PubMed ID: 31329947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluorescence energy transfer between the primer and the beta subunit of the DNA polymerase III holoenzyme.
    Griep MA; McHenry CS
    J Biol Chem; 1992 Feb; 267(5):3052-9. PubMed ID: 1737760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The chi psi subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of an SSB-coated template.
    Glover BP; McHenry CS
    J Biol Chem; 1998 Sep; 273(36):23476-84. PubMed ID: 9722585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are the SSB-Interacting Proteins RecO, RecG, PriA and the DnaB-Interacting Protein Rep Bound to Progressing Replication Forks in Escherichia coli?
    Bentchikou E; Chagneau C; Long E; Matelot M; Allemand JF; Michel B
    PLoS One; 2015; 10(8):e0134892. PubMed ID: 26244508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dnaE173 mutator mutation confers on the alpha subunit of Escherichia coli DNA polymerase III a capacity for highly processive DNA synthesis and stable binding to primer/template DNA.
    Yanagihara F; Yoshida S; Sugaya Y; Maki H
    Genes Genet Syst; 2007 Aug; 82(4):273-80. PubMed ID: 17895578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recycling of single-stranded DNA-binding protein by the bacterial replisome.
    Spenkelink LM; Lewis JS; Jergic S; Xu ZQ; Robinson A; Dixon NE; van Oijen AM
    Nucleic Acids Res; 2019 May; 47(8):4111-4123. PubMed ID: 30767010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA.
    Bertram JG; Bloom LB; Turner J; O'Donnell M; Beechem JM; Goodman MF
    J Biol Chem; 1998 Sep; 273(38):24564-74. PubMed ID: 9733751
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously.
    Indiani C; McInerney P; Georgescu R; Goodman MF; O'Donnell M
    Mol Cell; 2005 Sep; 19(6):805-15. PubMed ID: 16168375
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Escherichia coli RadD Protein Functionally Interacts with the Single-stranded DNA-binding Protein.
    Chen SH; Byrne-Nash RT; Cox MM
    J Biol Chem; 2016 Sep; 291(39):20779-86. PubMed ID: 27519413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Defining the position of the switches between replicative and bypass DNA polymerases.
    Fujii S; Fuchs RP
    EMBO J; 2004 Oct; 23(21):4342-52. PubMed ID: 15470496
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA Polymerase III, but Not Polymerase IV, Must Be Bound to a τ-Containing DnaX Complex to Enable Exchange into Replication Forks.
    Yuan Q; Dohrmann PR; Sutton MD; McHenry CS
    J Biol Chem; 2016 May; 291(22):11727-35. PubMed ID: 27056333
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.