These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33877610)

  • 81. The replisome uses mRNA as a primer after colliding with RNA polymerase.
    Pomerantz RT; O'Donnell M
    Nature; 2008 Dec; 456(7223):762-6. PubMed ID: 19020502
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Transposition into replicating DNA occurs through interaction with the processivity factor.
    Parks AR; Li Z; Shi Q; Owens RM; Jin MM; Peters JE
    Cell; 2009 Aug; 138(4):685-95. PubMed ID: 19703395
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Analytical ultracentrifugation: A versatile tool for the characterisation of macromolecular complexes in solution.
    Patel TR; Winzor DJ; Scott DJ
    Methods; 2016 Feb; 95():55-61. PubMed ID: 26555086
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Analytical Ultracentrifugation (AUC): An Overview of the Application of Fluorescence and Absorbance AUC to the Study of Biological Macromolecules.
    Edwards GB; Muthurajan UM; Bowerman S; Luger K
    Curr Protoc Mol Biol; 2020 Dec; 133(1):e131. PubMed ID: 33351266
    [TBL] [Abstract][Full Text] [Related]  

  • 85. The partner-swapping sliding clamp loader exposed.
    Jeruzalmi D
    Nat Struct Mol Biol; 2022 Apr; 29(4):283-286. PubMed ID: 35410371
    [No Abstract]   [Full Text] [Related]  

  • 86. Macromolecular competition titration method accessing thermodynamics of the unmodified macromolecule-ligand interactions through spectroscopic titrations of fluorescent analogs.
    Bujalowski W; Jezewska MJ
    Methods Enzymol; 2011; 488():17-57. PubMed ID: 21195223
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Identification of a hypochlorite-specific transcription factor from Escherichia coli.
    Gebendorfer KM; Drazic A; Le Y; Gundlach J; Bepperling A; Kastenmüller A; Ganzinger KA; Braun N; Franzmann TM; Winter J
    J Biol Chem; 2012 Feb; 287(9):6892-903. PubMed ID: 22223481
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Tools for the quantitative analysis of sedimentation boundaries detected by fluorescence optical analytical ultracentrifugation.
    Zhao H; Casillas E; Shroff H; Patterson GH; Schuck P
    PLoS One; 2013; 8(10):e77245. PubMed ID: 24204779
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Versatile Analysis of DNA-Biomolecule Interactions in Solution by Hydrodynamic Separation and Single Molecule Detection.
    Friedrich SM; Bang R; Li A; Wang TH
    Anal Chem; 2019 Feb; 91(4):2822-2830. PubMed ID: 30668901
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Measuring protein-protein interactions by equilibrium sedimentation.
    Balbo A; Brown PH; Braswell EH; Schuck P
    Curr Protoc Immunol; 2007 Nov; Chapter 18():18.8.1-18.8.28. PubMed ID: 18432990
    [TBL] [Abstract][Full Text] [Related]  

  • 91. NUTS and BOLTS: applications of fluorescence-detected sedimentation.
    Kroe RR; Laue TM
    Anal Biochem; 2009 Jul; 390(1):1-13. PubMed ID: 19103145
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Methods for the design and analysis of sedimentation velocity and sedimentation equilibrium experiments with proteins.
    Demeler B
    Curr Protoc Protein Sci; 2010 Apr; Chapter 7():7.13.1-7.13.24. PubMed ID: 20393977
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Are fluorescence-detected sedimentation velocity data reliable?
    Lyons DF; Lary JW; Husain B; Correia JJ; Cole JL
    Anal Biochem; 2013 Jun; 437(2):133-7. PubMed ID: 23499970
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Quantitative Analysis of Protein Self-Association by Sedimentation Velocity.
    Zhao H; Li W; Chu W; Bollard M; Adão R; Schuck P
    Curr Protoc Protein Sci; 2020 Sep; 101(1):e109. PubMed ID: 32614509
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Understanding how the replisome works.
    Marians KJ
    Nat Struct Mol Biol; 2008 Feb; 15(2):125-7. PubMed ID: 18250630
    [No Abstract]   [Full Text] [Related]  

  • 96. Analysis of protein interactions with picomolar binding affinity by fluorescence-detected sedimentation velocity.
    Zhao H; Mayer ML; Schuck P
    Anal Chem; 2014 Mar; 86(6):3181-7. PubMed ID: 24552356
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Visualizing protein-DNA interactions in live bacterial cells using photoactivated single-molecule tracking.
    Uphoff S; Sherratt DJ; Kapanidis AN
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24638084
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Calibrating analytical ultracentrifuges.
    Zhao H; Nguyen A; To SC; Schuck P
    Eur Biophys J; 2021 May; 50(3-4):353-362. PubMed ID: 33398460
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments.
    Padrick SB; Deka RK; Chuang JL; Wynn RM; Chuang DT; Norgard MV; Rosen MK; Brautigam CA
    Anal Biochem; 2010 Dec; 407(1):89-103. PubMed ID: 20667444
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Kinetic dissection of macromolecular complex formation with minimally perturbing fluorescent probes.
    Cory MB; Hostetler ZM; Kohli RM
    Methods Enzymol; 2022; 664():151-171. PubMed ID: 35331372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.