These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33877622)

  • 1. Electrophysiological Approaches for the Study of Ion Channel Function.
    Cui G; Cottrill KA; McCarty NA
    Methods Mol Biol; 2021; 2302():49-67. PubMed ID: 33877622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFTR regulation of epithelial sodium channel.
    Qadri YJ; Cormet-Boyaka E; Benos DJ; Berdiev BK
    Methods Mol Biol; 2011; 742():35-50. PubMed ID: 21547725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanosensitive activation of CFTR by increased cell volume and hydrostatic pressure but not shear stress.
    Vitzthum C; Clauss WG; Fronius M
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2942-51. PubMed ID: 26357939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy.
    Bangel-Ruland N; Tomczak K; Fernández Fernández E; Leier G; Leciejewski B; Rudolph C; Rosenecker J; Weber WM
    J Gene Med; 2013; 15(11-12):414-26. PubMed ID: 24123772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cl- transport by cystic fibrosis transmembrane conductance regulator (CFTR) contributes to the inhibition of epithelial Na+ channels (ENaCs) in Xenopus oocytes co-expressing CFTR and ENaC.
    Briel M; Greger R; Kunzelmann K
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):825-36. PubMed ID: 9518736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: implications for cystic fibrosis.
    Wagner CA; Ott M; Klingel K; Beck S; Melzig J; Friedrich B; Wild KN; Bröer S; Moschen I; Albers A; Waldegger S; Tümmler B; Egan ME; Geibel JP; Kandolf R; Lang F
    Cell Physiol Biochem; 2001; 11(4):209-18. PubMed ID: 11509829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel.
    Nagel G; Szellas T; Riordan JR; Friedrich T; Hartung K
    EMBO Rep; 2001 Mar; 2(3):249-54. PubMed ID: 11266369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophysiological, biochemical, and bioinformatic methods for studying CFTR channel gating and its regulation.
    Csanády L; Vergani P; Gulyás-Kovács A; Gadsby DC
    Methods Mol Biol; 2011; 741():443-69. PubMed ID: 21594801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abnormal regulatory interactions of I148T-CFTR and the epithelial Na+ channel in Xenopus oocytes.
    Suaud L; Yan W; Rubenstein RC
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C603-11. PubMed ID: 16822950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Failure of the cystic fibrosis transmembrane conductance regulator to conduct ATP.
    Reddy MM; Quinton PM; Haws C; Wine JJ; Grygorczyk R; Tabcharani JA; Hanrahan JW; Gunderson KL; Kopito RR
    Science; 1996 Mar; 271(5257):1876-9. PubMed ID: 8596959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interregulation of proton-gated Na(+) channel 3 and cystic fibrosis transmembrane conductance regulator.
    Su X; Li Q; Shrestha K; Cormet-Boyaka E; Chen L; Smith PR; Sorscher EJ; Benos DJ; Matalon S; Ji HL
    J Biol Chem; 2006 Dec; 281(48):36960-8. PubMed ID: 17012229
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of binding and nucleoside diphosphate kinase A in the regulation of the cystic fibrosis transmembrane conductance regulator by AMP-activated protein kinase.
    King JD; Lee J; Riemen CE; Neumann D; Xiong S; Foskett JK; Mehta A; Muimo R; Hallows KR
    J Biol Chem; 2012 Sep; 287(40):33389-400. PubMed ID: 22869372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cystic fibrosis transmembrane conductance regulator impedes proteolytic stimulation of the epithelial Na+ channel.
    Gentzsch M; Dang H; Dang Y; Garcia-Caballero A; Suchindran H; Boucher RC; Stutts MJ
    J Biol Chem; 2010 Oct; 285(42):32227-32. PubMed ID: 20709758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR induces extracellular acid sensing in Xenopus oocytes which activates endogenous Ca²⁺-activated Cl⁻ conductance.
    Kongsuphol P; Schreiber R; Kraidith K; Kunzelmann K
    Pflugers Arch; 2011 Sep; 462(3):479-87. PubMed ID: 21647592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanosensitivity of wild-type and G551D cystic fibrosis transmembrane conductance regulator (CFTR) controls regulatory volume decrease in simple epithelia.
    Xie C; Cao X; Chen X; Wang D; Zhang WK; Sun Y; Hu W; Zhou Z; Wang Y; Huang P
    FASEB J; 2016 Apr; 30(4):1579-89. PubMed ID: 26683699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cystic fibrosis transmembrane conductance regulator (CFTR) inhibits ENaC through an increase in the intracellular Cl- concentration.
    König J; Schreiber R; Voelcker T; Mall M; Kunzelmann K
    EMBO Rep; 2001 Nov; 2(11):1047-51. PubMed ID: 11606421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. δβγ-ENaC is inhibited by CFTR but stimulated by cAMP in
    Rauh R; Hoerner C; Korbmacher C
    Am J Physiol Lung Cell Mol Physiol; 2017 Feb; 312(2):L277-L287. PubMed ID: 27941075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.