These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 33877624)

  • 1. Atomic Force Microscopy Reveals Membrane Protein Activity at the Single Molecule Level.
    Chattrakun K; Schaefer KG; Chandler LS; Marsh BP; King GM
    Methods Mol Biol; 2021; 2302():81-99. PubMed ID: 33877624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Force Microscopy Reveals Complexity Underlying General Secretory System Activity.
    Weaver DR; King GM
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformations and basal conformational dynamics of translocation factor SecDF vary with translocon SecYEG interaction.
    Weaver DR; Amin DN; King GM
    J Biol Chem; 2022 Oct; 298(10):102412. PubMed ID: 36007614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging and Force Spectroscopy of Single Transmembrane Proteins with the Atomic Force Microscope.
    Sapra KT
    Methods Mol Biol; 2019; 2003():107-144. PubMed ID: 31218616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning membrane protein mobility by confinement into nanodomains.
    Karner A; Nimmervoll B; Plochberger B; Klotzsch E; Horner A; Knyazev DG; Kuttner R; Winkler K; Winter L; Siligan C; Ollinger N; Pohl P; Preiner J
    Nat Nanotechnol; 2017 Mar; 12(3):260-266. PubMed ID: 27842062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic force microscopy for quantitative understanding of peptide-induced lipid bilayer remodeling.
    Schaefer KG; Pittman AE; Barrera FN; King GM
    Methods; 2022 Jan; 197():20-29. PubMed ID: 33164792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein Translocation Activity in Surface-Supported Lipid Bilayers.
    Chattrakun K; Hoogerheide DP; Mao C; Randall LL; King GM
    Langmuir; 2019 Sep; 35(37):12246-12256. PubMed ID: 31448613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid domains in supported lipid bilayer for atomic force microscopy.
    Lin WC; Blanchette CD; Ratto TV; Longo ML
    Methods Mol Biol; 2007; 400():503-13. PubMed ID: 17951756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Particle Cryo-EM of Membrane Proteins in Lipid Nanodiscs.
    Kalienkova V; Alvadia C; Clerico Mosina V; Paulino C
    Methods Mol Biol; 2020; 2127():245-273. PubMed ID: 32112327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic force microscopy for the study of membrane proteins.
    Fotiadis D
    Curr Opin Biotechnol; 2012 Aug; 23(4):510-5. PubMed ID: 22176750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N; Thoma J
    Methods Mol Biol; 2020; 2127():359-372. PubMed ID: 32112333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FtsZ polymers bound to lipid bilayers through ZipA form dynamic two dimensional networks.
    Mateos-Gil P; Márquez I; López-Navajas P; Jiménez M; Vicente M; Mingorance J; Rivas G; Vélez M
    Biochim Biophys Acta; 2012 Mar; 1818(3):806-13. PubMed ID: 22198391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic Force Microscopy Imaging and Force Spectroscopy of Supported Lipid Bilayers.
    Unsay JD; Cosentino K; García-Sáez AJ
    J Vis Exp; 2015 Jul; (101):e52867. PubMed ID: 26273958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface planar bilayers of phospholipids used in protein membrane reconstitution: an atomic force microscopy study.
    Doménech O; Merino-Montero S; Montero MT; Hernández-Borrell J
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):102-6. PubMed ID: 16406753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface.
    Sandoval-Perez A; Pluhackova K; Böckmann RA
    J Chem Theory Comput; 2017 May; 13(5):2310-2321. PubMed ID: 28388089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Unit Imaging of Membrane Protein-Embedded Nanodiscs from Two Oriented Sides by High-Speed Atomic Force Microscopy.
    Haruyama T; Sugano Y; Kodera N; Uchihashi T; Ando T; Tanaka Y; Konno H; Tsukazaki T
    Structure; 2019 Jan; 27(1):152-160.e3. PubMed ID: 30318467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Force Spectroscopy of Membrane Protein Folding.
    Wijesinghe WCB; Min D
    J Mol Biol; 2023 Jun; 435(11):167975. PubMed ID: 37330286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale analysis of supported lipid bilayers using atomic force microscopy.
    El Kirat K; Morandat S; Dufrêne YF
    Biochim Biophys Acta; 2010 Apr; 1798(4):750-65. PubMed ID: 19664999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers.
    Sapra KT
    Methods Mol Biol; 2013; 974():73-110. PubMed ID: 23404273
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-molecule fluorescence vistas of how lipids regulate membrane proteins.
    Ward AE; Ye Y; Schuster JA; Wei S; Barrera FN
    Biochem Soc Trans; 2021 Aug; 49(4):1685-1694. PubMed ID: 34346484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.