BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33877810)

  • 21. Glycosylation Modification Enhances (2
    Li H; Ma W; Lyv Y; Gao S; Zhou J
    ACS Synth Biol; 2022 Jul; 11(7):2339-2347. PubMed ID: 35704764
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae.
    van Roermund CW; Tabak HF; van Den Berg M; Wanders RJ; Hettema EH
    J Cell Biol; 2000 Aug; 150(3):489-98. PubMed ID: 10931862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism and strategies for enhanced supply of acetyl-CoA in Saccharomyces cerevisiae.
    Zhang Q; Zeng W; Xu S; Zhou J
    Bioresour Technol; 2021 Dec; 342():125978. PubMed ID: 34598073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic engineering of the malonyl-CoA pathway to efficiently produce malonate in Saccharomyces cerevisiae.
    Li S; Fu W; Su R; Zhao Y; Deng Y
    Metab Eng; 2022 Sep; 73():1-10. PubMed ID: 35643281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a growth coupled and multi-layered dynamic regulation network balancing malonyl-CoA node to enhance (2S)-naringenin biosynthesis in Escherichia coli.
    Zhou S; Yuan SF; Nair PH; Alper HS; Deng Y; Zhou J
    Metab Eng; 2021 Sep; 67():41-52. PubMed ID: 34052445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Promoter-Library-Based Pathway Optimization for Efficient (2
    Gao S; Zhou H; Zhou J; Chen J
    J Agric Food Chem; 2020 Jun; 68(25):6884-6891. PubMed ID: 32458684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Reconstitution of a Pyruvate Dehydrogenase in the Cytosol of Saccharomyces cerevisiae through Lipoylation Machinery Engineering.
    Lian J; Zhao H
    ACS Synth Biol; 2016 Jul; 5(7):689-97. PubMed ID: 26991359
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A
    Liu D; Sica MS; Mao J; Chao LF; Siewers V
    ACS Synth Biol; 2022 Oct; 11(10):3228-3238. PubMed ID: 36137537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fine-Tuning of the Fatty Acid Pathway by Synthetic Antisense RNA for Enhanced (2S)-Naringenin Production from l-Tyrosine in Escherichia coli.
    Wu J; Yu O; Du G; Zhou J; Chen J
    Appl Environ Microbiol; 2014 Dec; 80(23):7283-92. PubMed ID: 25239896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.
    Sheng J; Stevens J; Feng X
    Sci Rep; 2016 May; 6():26884. PubMed ID: 27230732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism.
    Krivoruchko A; Serrano-Amatriain C; Chen Y; Siewers V; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Sep; 40(9):1051-6. PubMed ID: 23760499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.
    Cardenas J; Da Silva NA
    Metab Eng; 2016 Jul; 36():80-89. PubMed ID: 26969250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate.
    Bian F; Kasumov T; Thomas KR; Jobbins KA; David F; Minkler PE; Hoppel CL; Brunengraber H
    J Biol Chem; 2005 Mar; 280(10):9265-71. PubMed ID: 15611129
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expressing a cytosolic pyruvate dehydrogenase complex to increase free fatty acid production in Saccharomyces cerevisiae.
    Zhang Y; Su M; Qin N; Nielsen J; Liu Z
    Microb Cell Fact; 2020 Dec; 19(1):226. PubMed ID: 33302960
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p.
    van Roermund CW; Hettema EH; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1999 Nov; 18(21):5843-52. PubMed ID: 10545096
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel.
    Chen L; Zhang J; Chen WN
    PLoS One; 2014; 9(1):e84853. PubMed ID: 24465440
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae.
    Li M; Kildegaard KR; Chen Y; Rodriguez A; Borodina I; Nielsen J
    Metab Eng; 2015 Nov; 32():1-11. PubMed ID: 26344106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis.
    Milke L; Marienhagen J
    Appl Microbiol Biotechnol; 2020 Jul; 104(14):6057-6065. PubMed ID: 32385515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering de novo anthocyanin production in Saccharomyces cerevisiae.
    Levisson M; Patinios C; Hein S; de Groot PA; Daran JM; Hall RD; Martens S; Beekwilder J
    Microb Cell Fact; 2018 Jul; 17(1):103. PubMed ID: 29970082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1.
    Shi S; Chen Y; Siewers V; Nielsen J
    mBio; 2014 May; 5(3):e01130-14. PubMed ID: 24803522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.