BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33878323)

  • 1. Fabrication of Rapidly Separable Microneedles for Transdermal Delivery of Metformin on Diabetic Rats.
    Liu T; Jiang G; Song G; Sun Y; Zhang X; Zeng Z
    J Pharm Sci; 2021 Aug; 110(8):3004-3010. PubMed ID: 33878323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats.
    Liu T; Jiang G; Song G; Zhu J; Yang Y
    Biomed Microdevices; 2020 Jan; 22(1):12. PubMed ID: 31912303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly-γ-glutamic acid microneedles with a supporting structure design as a potential tool for transdermal delivery of insulin.
    Chen MC; Ling MH; Kusuma SJ
    Acta Biomater; 2015 Sep; 24():106-16. PubMed ID: 26102333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of metformin-loaded MIL-100(Fe) into hydrogel microneedles for prolonged regulation of blood glucose levels.
    Feng M; Li Y; Sun Y; Liu T; Yunusov KE; Jiang G
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38670077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separable Microneedles for Near-Infrared Light-Triggered Transdermal Delivery of Metformin in Diabetic Rats.
    Zhang Y; Wang D; Gao M; Xu B; Zhu J; Yu W; Liu D; Jiang G
    ACS Biomater Sci Eng; 2018 Aug; 4(8):2879-2888. PubMed ID: 33435011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin.
    Yu W; Jiang G; Liu D; Li L; Chen H; Liu Y; Huang Q; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():725-734. PubMed ID: 27987766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin.
    Liu S; Jin MN; Quan YS; Kamiyama F; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2012 Aug; 161(3):933-41. PubMed ID: 22634072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of composite microneedles integrated with insulin-loaded CaCO
    Liu D; Yu B; Jiang G; Yu W; Zhang Y; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():180-188. PubMed ID: 29853081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats.
    Zhang Y; Jiang G; Yu W; Liu D; Xu B
    Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():18-26. PubMed ID: 29407146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats.
    Yu W; Jiang G; Zhang Y; Liu D; Xu B; Zhou J
    J Mater Chem B; 2017 Dec; 5(48):9507-9513. PubMed ID: 32264565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of Dissolving Microneedles with Thermal-Responsive Coating for NIR-Triggered Transdermal Delivery of Metformin on Diabetic Rats.
    Liu D; Zhang Y; Jiang G; Yu W; Xu B; Zhu J
    ACS Biomater Sci Eng; 2018 May; 4(5):1687-1695. PubMed ID: 33445325
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Tort S; Mutlu Agardan NB; Han D; Steckl AJ
    J Microencapsul; 2020 Nov; 37(7):517-527. PubMed ID: 32783663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite.
    Yu W; Jiang G; Liu D; Li L; Tong Z; Yao J; Kong X
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():425-428. PubMed ID: 28183628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissolving polymer microneedle patches for rapid and efficient transdermal delivery of insulin to diabetic rats.
    Ling MH; Chen MC
    Acta Biomater; 2013 Nov; 9(11):8952-61. PubMed ID: 23816646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A self-adherent, bullet-shaped microneedle patch for controlled transdermal delivery of insulin.
    Seong KY; Seo MS; Hwang DY; O'Cearbhaill ED; Sreenan S; Karp JM; Yang SY
    J Control Release; 2017 Nov; 265():48-56. PubMed ID: 28344013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymeric Microneedles Integrated with Metformin-Loaded and PDA/LA-Coated Hollow Mesoporous SiO
    Zhang Y; Jiang G; Hong W; Gao M; Xu B; Zhu J; Song G; Liu T
    ACS Appl Bio Mater; 2018 Dec; 1(6):1906-1917. PubMed ID: 34996291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separable and Inseparable Silk Fibroin Microneedles for the Transdermal Delivery of Colchicine: Development, Characterization, and Comparisons.
    Liao S; Qiu G; Hu Y; Guo B; Qiu Y
    AAPS PharmSciTech; 2023 Dec; 25(1):3. PubMed ID: 38114734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapidly dissolvable microneedle patches for transdermal delivery of exenatide.
    Zhu Z; Luo H; Lu W; Luan H; Wu Y; Luo J; Wang Y; Pi J; Lim CY; Wang H
    Pharm Res; 2014 Dec; 31(12):3348-60. PubMed ID: 24867426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication and characterization of coated microneedle patches based on PEGDA for transdermal administration of metformin.
    Zhou B; Guo Z; Zhao P; Wang H; Dong S; Cheng B; Yang J; Li B; Wang X
    Drug Deliv Transl Res; 2024 Jan; 14(1):131-142. PubMed ID: 37450235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolving Polymer Microneedles for Transdermal Delivery of Insulin.
    Zhang N; Zhou X; Liu L; Zhao L; Xie H; Yang Z
    Front Pharmacol; 2021; 12():719905. PubMed ID: 34630098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.