These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 33878501)
21. Recent progress in the microbial production of xylonic acid. Trichez D; Carneiro CVGC; Braga M; Almeida JRM World J Microbiol Biotechnol; 2022 Jun; 38(7):127. PubMed ID: 35668329 [TBL] [Abstract][Full Text] [Related]
22. Adaptive evolution of Gluconobacter oxydans accelerates the conversion rate of non-glucose sugars derived from lignocellulose biomass. Jin C; Hou W; Yao R; Zhou P; Zhang H; Bao J Bioresour Technol; 2019 Oct; 289():121623. PubMed ID: 31202178 [TBL] [Abstract][Full Text] [Related]
23. The development of cement and concrete additive: based on xylonic acid derived via bioconversion of xylose. Chun BW; Dair B; Macuch PJ; Wiebe D; Porteneuve C; Jeknavorian A Appl Biochem Biotechnol; 2006 Mar; 131(1-3):645-58. PubMed ID: 18563642 [TBL] [Abstract][Full Text] [Related]
24. Continuous co-production of biomass and bio-oxidized metabolite (sorbose) using Gluconobacter oxydans in a high-oxygen tension bioreactor. Zhou X; Hua X; Zhou X; Xu Y; Zhang W Bioresour Technol; 2019 Apr; 277():221-224. PubMed ID: 30658939 [TBL] [Abstract][Full Text] [Related]
25. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover. Zhu J; Rong Y; Yang J; Zhou X; Xu Y; Zhang L; Chen J; Yong Q; Yu S Appl Biochem Biotechnol; 2015 Jul; 176(5):1370-81. PubMed ID: 25947618 [TBL] [Abstract][Full Text] [Related]
26. Comparison of selective acidolysis of xylan and enzymatic hydrolysability of cellulose in various lignocellulosic materials by a novel xylonic acid catalysis method. Guo J; Cao R; Huang K; Xu Y Bioresour Technol; 2020 May; 304():122943. PubMed ID: 32086033 [TBL] [Abstract][Full Text] [Related]
27. Optimization of Specific Productivity for Xylonic Acid Production by He T; Xu C; Ding C; Liu X; Gu X Front Bioeng Biotechnol; 2021; 9():729988. PubMed ID: 34485263 [TBL] [Abstract][Full Text] [Related]
28. Unique glucose oxidation catalysis of Gluconobacter oxydans constitutes an efficient cellulosic gluconic acid fermentation free of inhibitory compounds disturbance. Zhou P; Yao R; Zhang H; Bao J Biotechnol Bioeng; 2019 Sep; 116(9):2191-2199. PubMed ID: 31081135 [TBL] [Abstract][Full Text] [Related]
29. Resolving the formidable barrier of oxygen transferring rate (OTR) in ultrahigh-titer bioconversion/biocatalysis by a sealed-oxygen supply biotechnology (SOS). Hua X; Zhou X; Du G; Xu Y Biotechnol Biofuels; 2020; 13():1. PubMed ID: 31911817 [TBL] [Abstract][Full Text] [Related]
30. High cell density fermentation of Gluconobacter oxydans DSM 2003 for glycolic acid production. Wei G; Yang X; Gan T; Zhou W; Lin J; Wei D J Ind Microbiol Biotechnol; 2009 Aug; 36(8):1029-34. PubMed ID: 19434434 [TBL] [Abstract][Full Text] [Related]
31. Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans. Yao R; Hou W; Bao J Bioresour Technol; 2017 Nov; 244(Pt 1):1188-1192. PubMed ID: 28844838 [TBL] [Abstract][Full Text] [Related]
32. Improving the production yield and productivity of 1,3-dihydroxyacetone from glycerol fermentation using Gluconobacter oxydans NL71 in a compressed oxygen supply-sealed and stirred tank reactor (COS-SSTR). Zhou X; Zhou X; Xu Y; Yu S Bioprocess Biosyst Eng; 2016 Aug; 39(8):1315-8. PubMed ID: 27021347 [TBL] [Abstract][Full Text] [Related]
33. Effects of Inhibitors on the Transcriptional Profiling of Miao Y; Shen Y; Xu Y Front Microbiol; 2017; 8():716. PubMed ID: 28487685 [TBL] [Abstract][Full Text] [Related]
34. Production of xylonic acid by Klebsiella pneumoniae. Wang C; Wei D; Zhang Z; Wang D; Shi J; Kim CH; Jiang B; Han Z; Hao J Appl Microbiol Biotechnol; 2016 Dec; 100(23):10055-10063. PubMed ID: 27629123 [TBL] [Abstract][Full Text] [Related]
35. Eco-friendly consolidated process for co-production of xylooligosaccharides and fermentable sugars using self-providing xylonic acid as key pretreatment catalyst. Zhou X; Xu Y Biotechnol Biofuels; 2019; 12():272. PubMed ID: 31832095 [TBL] [Abstract][Full Text] [Related]
36. Improving techno-economics of bioproduct glycolic acid by successive recycled-cell catalysis of ethylene glycol with Gluconobacter oxydans. Hua X; Zhou X; Xu Y Bioprocess Biosyst Eng; 2018 Oct; 41(10):1555-1559. PubMed ID: 29948215 [TBL] [Abstract][Full Text] [Related]
37. Production of Gluconobacter oxydans cells from low-cost culture medium for conversion of glycerol to dihydroxyacetone. Wei S; Song Q; Wei D Prep Biochem Biotechnol; 2007; 37(2):113-21. PubMed ID: 17454822 [TBL] [Abstract][Full Text] [Related]
38. Cascade hydrolysis and fermentation of corn stover for production of high titer gluconic and xylonic acids. Hou W; Zhang M; Bao J Bioresour Technol; 2018 Sep; 264():395-399. PubMed ID: 29958773 [TBL] [Abstract][Full Text] [Related]
39. Efficient aerobic fermentation of gluconic acid by high tension oxygen supply strategy with reusable Gluconobacter oxydans HG19 cells. Lian Z; Dai L; Zhang R; Liu Y; Zhou X; Xu Y Bioprocess Biosyst Eng; 2022 Nov; 45(11):1849-1855. PubMed ID: 36149483 [TBL] [Abstract][Full Text] [Related]
40. Fermentation of lignocellulosic sugars to acetic acid by Moorella thermoacetica. Ehsanipour M; Suko AV; Bura R J Ind Microbiol Biotechnol; 2016 Jun; 43(6):807-16. PubMed ID: 26992903 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]