BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 33878678)

  • 1. Roles of liquid-liquid phase separation in bacterial RNA metabolism.
    Nandana V; Schrader JM
    Curr Opin Microbiol; 2021 Jun; 61():91-98. PubMed ID: 33878678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic composition of eukaryotic and bacterial RNA decay condensates suggests convergent evolution.
    Rathnayaka-Mudiyanselage IW; Nandana V; Schrader JM
    Curr Opin Microbiol; 2024 Jun; 79():102467. PubMed ID: 38569418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-Liquid Phase Separation of the DEAD-Box Cyanobacterial RNA Helicase Redox (CrhR) into Dynamic Membraneless Organelles in
    Whitman BT; Wang Y; Murray CRA; Glover MJN; Owttrim GW
    Appl Environ Microbiol; 2023 Apr; 89(4):e0001523. PubMed ID: 36920190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dead or alive: DEAD-box ATPases as regulators of ribonucleoprotein complex condensation.
    Weis K
    Biol Chem; 2021 Apr; 402(5):653-661. PubMed ID: 33818025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates.
    Weis K; Hondele M
    Annu Rev Biochem; 2022 Jun; 91():197-219. PubMed ID: 35303788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DEAD-box ATPases are global regulators of phase-separated organelles.
    Hondele M; Sachdev R; Heinrich S; Wang J; Vallotton P; Fontoura BMA; Weis K
    Nature; 2019 Sep; 573(7772):144-148. PubMed ID: 31435012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
    Yeong V; Werth EG; Brown LM; Obermeyer AC
    ACS Cent Sci; 2020 Dec; 6(12):2301-2310. PubMed ID: 33376791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates?
    Forman-Kay JD; Ditlev JA; Nosella ML; Lee HO
    RNA; 2022 Jan; 28(1):36-47. PubMed ID: 34772786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization and Function of Non-dynamic Biomolecular Condensates.
    Woodruff JB; Hyman AA; Boke E
    Trends Biochem Sci; 2018 Feb; 43(2):81-94. PubMed ID: 29258725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells.
    Gao Z; Zhang W; Chang R; Zhang S; Yang G; Zhao G
    Front Microbiol; 2021; 12():751880. PubMed ID: 34759902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.
    Zhao YG; Zhang H
    Dev Cell; 2020 Oct; 55(1):30-44. PubMed ID: 32726575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Splicing regulation through biomolecular condensates and membraneless organelles.
    Giudice J; Jiang H
    Nat Rev Mol Cell Biol; 2024 May; ():. PubMed ID: 38773325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant phase separation and cancer.
    Taniue K; Akimitsu N
    FEBS J; 2022 Jan; 289(1):17-39. PubMed ID: 33583140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Interactions Between Membrane-Bound Organelles, Biomolecular Condensates and the Cytoskeleton.
    Koppers M; Özkan N; Farías GG
    Front Cell Dev Biol; 2020; 8():618733. PubMed ID: 33409284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BR-Bodies Provide Selectively Permeable Condensates that Stimulate mRNA Decay and Prevent Release of Decay Intermediates.
    Al-Husini N; Tomares DT; Pfaffenberger ZJ; Muthunayake NS; Samad MA; Zuo T; Bitar O; Aretakis JR; Bharmal MM; Gega A; Biteen JS; Childers WS; Schrader JM
    Mol Cell; 2020 May; 78(4):670-682.e8. PubMed ID: 32343944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergent properties of melanin-inspired peptide/RNA condensates.
    Netzer A; Katzir I; Baruch Leshem A; Weitman M; Lampel A
    Proc Natl Acad Sci U S A; 2023 Oct; 120(44):e2310569120. PubMed ID: 37871222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase separation in genome organization across evolution.
    Feric M; Misteli T
    Trends Cell Biol; 2021 Aug; 31(8):671-685. PubMed ID: 33771451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics.
    Conti BA; Oppikofer M
    Trends Pharmacol Sci; 2022 Oct; 43(10):820-837. PubMed ID: 36028355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DEAD-box ATPases as regulators of biomolecular condensates and membrane-less organelles.
    Overwijn D; Hondele M
    Trends Biochem Sci; 2023 Mar; 48(3):244-258. PubMed ID: 36344372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecular condensates: organizers of cellular biochemistry.
    Banani SF; Lee HO; Hyman AA; Rosen MK
    Nat Rev Mol Cell Biol; 2017 May; 18(5):285-298. PubMed ID: 28225081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.