BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33878929)

  • 1. Locomotor transitions in the potential energy landscape-dominated regime.
    Othayoth R; Xuan Q; Wang Y; Li C
    Proc Biol Sci; 2021 Apr; 288(1949):20202734. PubMed ID: 33878929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An energy landscape approach to locomotor transitions in complex 3D terrain.
    Othayoth R; Thoms G; Li C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14987-14995. PubMed ID: 32541025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cockroaches adjust body and appendages to traverse cluttered large obstacles.
    Wang Y; Othayoth R; Li C
    J Exp Biol; 2022 May; 225(10):. PubMed ID: 35502788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body-terrain interaction affects large bump traversal of insects and legged robots.
    Gart SW; Li C
    Bioinspir Biomim; 2018 Feb; 13(2):026005. PubMed ID: 29394159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental force sensing helps robots traverse cluttered large obstacles.
    Xuan Q; Li C
    Bioinspir Biomim; 2023 Nov; 19(1):. PubMed ID: 37939388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain.
    Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ
    Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic traversal of large gaps by insects and legged robots reveals a template.
    Gart SW; Yan C; Othayoth R; Ren Z; Li C
    Bioinspir Biomim; 2018 Feb; 13(2):026006. PubMed ID: 29394160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems.
    Mikolajczyk T; Mikołajewska E; Al-Shuka HFN; Malinowski T; Kłodowski A; Pimenov DY; Paczkowski T; Hu F; Giasin K; Mikołajewski D; Macko M
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems.
    Aguilar J; Zhang T; Qian F; Kingsbury M; McInroe B; Mazouchova N; Li C; Maladen R; Gong C; Travers M; Hatton RL; Choset H; Umbanhowar PB; Goldman DI
    Rep Prog Phys; 2016 Nov; 79(11):110001. PubMed ID: 27652614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viability leads to the emergence of gait transitions in learning agile quadrupedal locomotion on challenging terrains.
    Shafiee M; Bellegarda G; Ijspeert A
    Nat Commun; 2024 Apr; 15(1):3073. PubMed ID: 38594288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Propelling and perturbing appendages together facilitate strenuous ground self-righting.
    Othayoth R; Li C
    Elife; 2021 Jul; 10():. PubMed ID: 34231466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A terrain treadmill to study animal locomotion through large obstacles.
    Othayoth R; Strebel B; Han Y; Francois E; Li C
    J Exp Biol; 2022 Jul; 225(13):. PubMed ID: 35724269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lateral Oscillation and Body Compliance Help Snakes and Snake Robots Stably Traverse Large, Smooth Obstacles.
    Fu Q; Gart SW; Mitchel TW; Kim JS; Chirikjian GS; Li C
    Integr Comp Biol; 2020 Jul; 60(1):171-179. PubMed ID: 32215569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A general locomotion control framework for multi-legged locomotors.
    Chong B; O Aydin Y; Rieser JM; Sartoretti G; Wang T; Whitman J; Kaba A; Aydin E; McFarland C; Diaz Cruz K; Rankin JW; Michel KB; Nicieza A; Hutchinson JR; Choset H; Goldman DI
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35533656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact feedback helps snake robots propel against uneven terrain using vertical bending.
    Fu Q; Li C
    Bioinspir Biomim; 2023 Aug; 18(5):. PubMed ID: 37433307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical intelligence simplifies control in terrestrial limbless locomotion.
    Wang T; Pierce C; Kojouharov V; Chong B; Diaz K; Lu H; Goldman DI
    Sci Robot; 2023 Dec; 8(85):eadi2243. PubMed ID: 38117866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Randomness in appendage coordination facilitates strenuous ground self-righting.
    Xuan Q; Li C
    Bioinspir Biomim; 2020 Oct; 15(6):. PubMed ID: 32750690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient bipedal locomotion on rough terrain via compliant ankle actuation with energy regulation.
    Kerimoglu D; Karkoub M; Ismail U; Morgul O; Saranli U
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34256362
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological computation of multi-gaited robot locomotion based on free vibration.
    Reis M; Yu X; Maheshwari N; Iida F
    Artif Life; 2013; 19(1):97-114. PubMed ID: 23186346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive Centipede Walking via Synergetic Coupling Between Decentralized Control and Flexible Body Dynamics.
    Yasui K; Takano S; Kano T; Ishiguro A
    Front Robot AI; 2022; 9():797566. PubMed ID: 35450166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.