These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33878929)

  • 21. Insect walking and robotics.
    Delcomyn F
    Annu Rev Entomol; 2004; 49():51-70. PubMed ID: 14651456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Step Forward: Functional Diversity and Emerging Themes of Slow-Speed Locomotion in Vertebrates.
    Gibb AC; Amplo H; Struble M; Kawano SM
    Integr Comp Biol; 2022 Sep; ():. PubMed ID: 36124746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Continuous Online Adaptation of Bioinspired Adaptive Neuroendocrine Control for Autonomous Walking Robots.
    Homchanthanakul J; Manoonpong P
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1833-1845. PubMed ID: 34669583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning robust autonomous navigation and locomotion for wheeled-legged robots.
    Lee J; Bjelonic M; Reske A; Wellhausen L; Miki T; Hutter M
    Sci Robot; 2024 Apr; 9(89):eadi9641. PubMed ID: 38657088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing minimal and scalable insect-inspired multi-locomotion millirobots.
    Zhakypov Z; Mori K; Hosoda K; Paik J
    Nature; 2019 Jul; 571(7765):381-386. PubMed ID: 31292552
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulation and robotics studies of salamander locomotion: applying neurobiological principles to the control of locomotion in robots.
    Ijspeert AJ; Crespi A; Cabelguen JM
    Neuroinformatics; 2005; 3(3):171-95. PubMed ID: 16077158
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Snakes combine vertical and lateral bending to traverse uneven terrain.
    Fu Q; Astley HC; Li C
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35235918
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Flexible Multimodal Sole Sensor for Legged Robot Sensing Complex Ground Information during Locomotion.
    Xu Y; Wang Z; Hao W; Zhao W; Lin W; Jin B; Ding N
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The neuromechanics of animal locomotion: From biology to robotics and back.
    Ramdya P; Ijspeert AJ
    Sci Robot; 2023 May; 8(78):eadg0279. PubMed ID: 37256966
    [TBL] [Abstract][Full Text] [Related]  

  • 30. There are unique kinematics during locomotor transitions between level ground and stair ambulation that persist with increasing stair grade.
    Neuman RM; Fey NP
    Sci Rep; 2023 May; 13(1):8576. PubMed ID: 37237006
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robotics-inspired biology.
    Gravish N; Lauder GV
    J Exp Biol; 2018 Mar; 221(Pt 7):. PubMed ID: 29599417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. General Distributed Neural Control and Sensory Adaptation for Self-Organized Locomotion and Fast Adaptation to Damage of Walking Robots.
    Miguel-Blanco A; Manoonpong P
    Front Neural Circuits; 2020; 14():46. PubMed ID: 32973461
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-reconfigurable multilegged robot swarms collectively accomplish challenging terradynamic tasks.
    Ozkan-Aydin Y; Goldman DI
    Sci Robot; 2021 Jul; 6(56):. PubMed ID: 34321347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies.
    Ijspeert AJ; Daley MA
    J Exp Biol; 2023 Aug; 226(15):. PubMed ID: 37565347
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines.
    Manoonpong P; Parlitz U; Wörgötter F
    Front Neural Circuits; 2013; 7():12. PubMed ID: 23408775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multilegged matter transport: A framework for locomotion on noisy landscapes.
    Chong B; He J; Soto D; Wang T; Irvine D; Blekherman G; Goldman DI
    Science; 2023 May; 380(6644):509-515. PubMed ID: 37141349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A terradynamics of legged locomotion on granular media.
    Li C; Zhang T; Goldman DI
    Science; 2013 Mar; 339(6126):1408-12. PubMed ID: 23520106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anisotropic compliance of robot legs improves recovery from swing-phase collisions.
    Chang H; Chang J; Clifton G; Gravish N
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34130262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A gecko-inspired robot with CPG-based neural control for locomotion and body height adaptation.
    Shao D; Wang Z; Ji A; Dai Z; Manoonpong P
    Bioinspir Biomim; 2022 Apr; 17(3):. PubMed ID: 35236786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Running over unknown rough terrain with a one-legged planar robot.
    Andrews B; Miller B; Schmitt J; Clark JE
    Bioinspir Biomim; 2011 Jun; 6(2):026009. PubMed ID: 21555844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.