These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33878935)

  • 1. An Overview of Advanced
    Van Meenen J; Ní Dhubhghaill S; Van den Bogerd B; Koppen C
    Tissue Eng Part B Rev; 2022 Jun; 28(3):506-516. PubMed ID: 33878935
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    De Hoon I; Boukherroub R; De Smedt SC; Szunerits S; Sauvage F
    Mol Pharm; 2023 Jul; 20(7):3298-3319. PubMed ID: 37314950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro cell culture models to study the corneal drug absorption.
    Reichl S; Kölln C; Hahne M; Verstraelen J
    Expert Opin Drug Metab Toxicol; 2011 May; 7(5):559-78. PubMed ID: 21381983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A multi-organ-chip co-culture of liver and testis equivalents: a first step toward a systemic male reprotoxicity model.
    Baert Y; Ruetschle I; Cools W; Oehme A; Lorenz A; Marx U; Goossens E; Maschmeyer I
    Hum Reprod; 2020 May; 35(5):1029-1044. PubMed ID: 32390056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro.
    Reichl S
    J Pharm Pharmacol; 2008 Mar; 60(3):299-307. PubMed ID: 18284809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes.
    Abdul Nasir NA; Agarwal P; Agarwal R; Iezhitsa I; Alyautdin R; Nukolova NN; Chekhonin VP; Mohd Ismail N
    Drug Deliv; 2016 Oct; 23(8):2765-2771. PubMed ID: 26289215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QobuR - A new in vitro human corneal epithelial model for preclinical drug screening.
    Chacón M; Vázquez N; Berisa S; Persinal M; Sánchez M; Baamonde B; Alfonso JF; Fernández-Vega Cueto L; Merayo-Lloves J; Meana Á
    Eur J Pharm Biopharm; 2019 Mar; 136():164-173. PubMed ID: 30690064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current microfluidic platforms for reverse engineering of cornea.
    Li Q; Wong HL; Ip YL; Chu WY; Li MS; Saha C; Shih KC; Chan YK
    Mater Today Bio; 2023 Jun; 20():100634. PubMed ID: 37139464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-clinical investigation of the efficacy of an artificial tear solution containing hydroxypropyl-guar as a gelling agent.
    Ubels JL; Clousing DP; Van Haitsma TA; Hong BS; Stauffer P; Asgharian B; Meadows D
    Curr Eye Res; 2004 Jun; 28(6):437-44. PubMed ID: 15512952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses.
    Gause S; Hsu KH; Shafor C; Dixon P; Powell KC; Chauhan A
    Adv Colloid Interface Sci; 2016 Jul; 233():139-154. PubMed ID: 26318359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liposomes in topical ophthalmic drug delivery: an update.
    Agarwal R; Iezhitsa I; Agarwal P; Abdul Nasir NA; Razali N; Alyautdin R; Ismail NM
    Drug Deliv; 2016 May; 23(4):1075-91. PubMed ID: 25116511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacokinetic considerations in the treatment of bacterial keratitis.
    Callegan MC; O'Callaghan RJ; Hill JM
    Clin Pharmacokinet; 1994 Aug; 27(2):129-49. PubMed ID: 7955776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and ex vivo corneal penetration and absorption models.
    Agarwal P; Rupenthal ID
    Drug Deliv Transl Res; 2016 Dec; 6(6):634-647. PubMed ID: 26762419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limits on optimizing ocular drug delivery.
    Keister JC; Cooper ER; Missel PJ; Lang JC; Hager DF
    J Pharm Sci; 1991 Jan; 80(1):50-3. PubMed ID: 2013850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal Tissue Engineering: An In Vitro Model of the Stromal-nerve Interactions of the Human Cornea.
    Sharif R; Priyadarsini S; Rowsey TG; Ma JX; Karamichos D
    J Vis Exp; 2018 Jan; (131):. PubMed ID: 29443018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical corneal permeation model for ionizable drugs.
    Friedrich SW; Cheng YL; Saville BA
    J Ocul Pharmacol; 1993; 9(3):229-49. PubMed ID: 8228531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Development of an organotypic corneal construction as an in vitro model for permeability studies].
    Reichl S; Müller-Goymann CC
    Ophthalmologe; 2001 Sep; 98(9):853-8. PubMed ID: 11594225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modeling of drug transport across the in vitro cornea.
    Pak J; Chen ZJ; Sun K; Przekwas A; Walenga R; Fan J
    Comput Biol Med; 2018 Jan; 92():139-146. PubMed ID: 29175100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel micelle carriers for cyclosporin A topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies.
    Di Tommaso C; Bourges JL; Valamanesh F; Trubitsyn G; Torriglia A; Jeanny JC; Behar-Cohen F; Gurny R; Möller M
    Eur J Pharm Biopharm; 2012 Jun; 81(2):257-64. PubMed ID: 22445900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a serum-free human cornea construct for in vitro drug absorption studies: the influence of varying cultivation parameters on barrier characteristics.
    Hahne M; Reichl S
    Int J Pharm; 2011 Sep; 416(1):268-79. PubMed ID: 21771646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.