These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 33880794)

  • 1. Associating primary and specialized metabolism with salt induced osmotic stress tolerance in maize.
    Fernie AR
    New Phytol; 2021 Jun; 230(6):2091-2093. PubMed ID: 33880794
    [No Abstract]   [Full Text] [Related]  

  • 2. Metabolomics-driven gene mining and genetic improvement of tolerance to salt-induced osmotic stress in maize.
    Liang X; Liu S; Wang T; Li F; Cheng J; Lai J; Qin F; Li Z; Wang X; Jiang C
    New Phytol; 2021 Jun; 230(6):2355-2370. PubMed ID: 33666235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance.
    Richter JA; Erban A; Kopka J; Zörb C
    Plant Sci; 2015 Apr; 233():107-115. PubMed ID: 25711818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize.
    Zhao KF; Song J; Fan H; Zhou S; Zhao M
    J Integr Plant Biol; 2010 May; 52(5):468-75. PubMed ID: 20537042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism.
    Tan MP
    Plant Physiol Biochem; 2010 Jan; 48(1):21-6. PubMed ID: 19889550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.
    Guo R; Shi L; Yan C; Zhong X; Gu F; Liu Q; Xia X; Li H
    BMC Plant Biol; 2017 Feb; 17(1):41. PubMed ID: 28187710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association analysis of salt tolerance QTLs with SNP markers in maize (Zea mays L.).
    Xie Y; Feng Y; Chen Q; Zhao F; Zhou S; Ding Y; Song X; Li P; Wang B
    Genes Genomics; 2019 Oct; 41(10):1135-1145. PubMed ID: 31243730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. H
    Dos Santos Araújo G; de Oliveira Paula-Marinho S; de Paiva Pinheiro SK; de Castro Miguel E; de Sousa Lopes L; Camelo Marques E; de Carvalho HH; Gomes-Filho E
    Plant Sci; 2021 Feb; 303():110774. PubMed ID: 33487358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: is the epidermis growth-restricting?
    Zörb C; Mühling KH; Kutschera U; Geilfus CM
    PLoS One; 2015; 10(3):e0118406. PubMed ID: 25760715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of NMR-based metabolomics to the investigation of salt stress in maize (Zea mays).
    Gavaghan CL; Li JV; Hadfield ST; Hole S; Nicholson JK; Wilson ID; Howe PW; Stanley PD; Holmes E
    Phytochem Anal; 2011; 22(3):214-24. PubMed ID: 21204151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A maize mitogen-activated protein kinase kinase, ZmMKK1, positively regulated the salt and drought tolerance in transgenic Arabidopsis.
    Cai G; Wang G; Wang L; Liu Y; Pan J; Li D
    J Plant Physiol; 2014 Jul; 171(12):1003-16. PubMed ID: 24974327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification of cadaverine content by NO in salt-stressed maize.
    Simon-Sarkadi L; Ludidi N; Kocsy G
    Plant Signal Behav; 2014; 9(1):e27598. PubMed ID: 24398894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cytosolic NAD
    Zhao Y; Liu M; He L; Li X; Wang F; Yan B; Wei J; Zhao C; Li Z; Xu J
    BMC Plant Biol; 2019 Jan; 19(1):16. PubMed ID: 30626322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance.
    Chen F; Fang P; Peng Y; Zeng W; Zhao X; Ding Y; Zhuang Z; Gao Q; Ren B
    Int J Mol Sci; 2019 Sep; 20(19):. PubMed ID: 31554168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar-manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: a 2-year field experiment.
    Lashari MS; Ye Y; Ji H; Li L; Kibue GW; Lu H; Zheng J; Pan G
    J Sci Food Agric; 2015 Apr; 95(6):1321-7. PubMed ID: 25042565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress.
    De Costa W; Zörb C; Hartung W; Schubert S
    Physiol Plant; 2007 Oct; 131(2):311-21. PubMed ID: 18251902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings.
    Luo X; Wang B; Gao S; Zhang F; Terzaghi W; Dai M
    J Integr Plant Biol; 2019 Jun; 61(6):658-674. PubMed ID: 30803125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Isolation and functional characterization of a stress-responsive transcription factor ZmC2H2-1 in Zea mays].
    Wang Z; Mo XT; Zhang X; Xu MY; Zhao J; Wang L
    Yi Chuan; 2018 Sep; 40(9):767-778. PubMed ID: 30369480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A domestication-associated reduction in K
    Cao Y; Liang X; Yin P; Zhang M; Jiang C
    New Phytol; 2019 Apr; 222(1):301-317. PubMed ID: 30461018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na
    Zhang M; Cao Y; Wang Z; Wang ZQ; Shi J; Liang X; Song W; Chen Q; Lai J; Jiang C
    New Phytol; 2018 Feb; 217(3):1161-1176. PubMed ID: 29139111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.