These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33880851)

  • 1. Noncanonical Heme Ligands Steer Carbene Transfer Reactivity in an Artificial Metalloenzyme*.
    Pott M; Tinzl M; Hayashi T; Ota Y; Dunkelmann D; Mittl PRE; Hilvert D
    Angew Chem Int Ed Engl; 2021 Jun; 60(27):15063-15068. PubMed ID: 33880851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for the expression and characterization of artificial myoglobin-based carbene transferases.
    Carminati DM; Moore EJ; Fasan R
    Methods Enzymol; 2020; 644():35-61. PubMed ID: 32943150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Navigating the Unnatural Reaction Space: Directed Evolution of Heme Proteins for Selective Carbene and Nitrene Transfer.
    Yang Y; Arnold FH
    Acc Chem Res; 2021 Mar; 54(5):1209-1225. PubMed ID: 33491448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemoselective Cyclopropanation over Carbene Y-H Insertion Catalyzed by an Engineered Carbene Transferase.
    Moore EJ; Steck V; Bajaj P; Fasan R
    J Org Chem; 2018 Jul; 83(14):7480-7490. PubMed ID: 29905476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors.
    Mirts EN; Bhagi-Damodaran A; Lu Y
    Acc Chem Res; 2019 Apr; 52(4):935-944. PubMed ID: 30912643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox Engineering of Myoglobin by Cofactor Substitution to Enhance Cyclopropanation Reactivity.
    Kagawa Y; Oohora K; Himiyama T; Suzuki A; Hayashi T
    Angew Chem Int Ed Engl; 2024 Sep; 63(36):e202403485. PubMed ID: 38780472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pH-Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α-Helical Metalloprotein.
    Koebke KJ; Kühl T; Lojou E; Demeler B; Schoepp-Cothenet B; Iranzo O; Pecoraro VL; Ivancich A
    Angew Chem Int Ed Engl; 2021 Feb; 60(8):3974-3978. PubMed ID: 33215801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile incorporation of non-canonical heme ligands in myoglobin through chemical protein synthesis.
    Yi K; Wang P; He C
    Bioorg Med Chem; 2024 Oct; 112():117900. PubMed ID: 39217687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational approach to understand the role of metals and axial ligands in artificial heme enzyme catalyzed C-H insertion.
    Balhara R; Chatterjee R; Jindal G
    Phys Chem Chem Phys; 2021 Apr; 23(15):9500-9511. PubMed ID: 33885085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal Substitution Modulates the Reactivity and Extends the Reaction Scope of Myoglobin Carbene Transfer Catalysts.
    Sreenilayam G; Moore EJ; Steck V; Fasan R
    Adv Synth Catal; 2017 Jun; 359(12):2076-2089. PubMed ID: 29606929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclopropanations via Heme Carbenes: Basic Mechanism and Effects of Carbene Substituent, Protein Axial Ligand, and Porphyrin Substitution.
    Wei Y; Tinoco A; Steck V; Fasan R; Zhang Y
    J Am Chem Soc; 2018 Feb; 140(5):1649-1662. PubMed ID: 29268614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of RuMb: Toward a Green Catalyst for Carbene Insertion Reactions.
    Wolf MW; Vargas DA; Lehnert N
    Inorg Chem; 2017 May; 56(10):5623-5635. PubMed ID: 28443661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of proximal ligand substitutions on the carbene and nitrene transferase activity of myoglobin.
    Moore EJ; Fasan R
    Tetrahedron; 2019 Apr; 75(16):2357-2363. PubMed ID: 31133770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rational Design of an Artificial Metalloenzyme by Constructing a Metal-Binding Site Close to the Heme Cofactor in Myoglobin.
    Nie LS; Liu XC; Yu L; Liu AK; Sun LJ; Gao SQ; Lin YW
    Inorg Chem; 2024 Oct; 63(40):18531-18535. PubMed ID: 39311200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noncoded Amino Acids in de Novo Metalloprotein Design: Controlling Coordination Number and Catalysis.
    Koebke KJ; Pecoraro VL
    Acc Chem Res; 2019 May; 52(5):1160-1167. PubMed ID: 30933479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically encoded Nδ-vinyl histidine for the evolution of enzyme catalytic center.
    Huang H; Yan T; Liu C; Lu Y; Wu Z; Wang X; Wang J
    Nat Commun; 2024 Jul; 15(1):5714. PubMed ID: 38977701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic activity mastered by altering metal coordination spheres.
    Moura I; Pauleta SR; Moura JJ
    J Biol Inorg Chem; 2008 Nov; 13(8):1185-95. PubMed ID: 18719950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbene generation by cytochromes and electronic structure of heme-iron-porphyrin-carbene complex: a quantum chemical study.
    Taxak N; Patel B; Bharatam PV
    Inorg Chem; 2013 May; 52(9):5097-109. PubMed ID: 23560646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Heteronuclear Metalloenzymes.
    Bhagi-Damodaran A; Hosseinzadeh P; Mirts E; Reed J; Petrik ID; Lu Y
    Methods Enzymol; 2016; 580():501-37. PubMed ID: 27586347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directed Evolution of Artificial Metalloenzymes in Whole Cells.
    Gu Y; Bloomer BJ; Liu Z; Chen R; Clark DS; Hartwig JF
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202110519. PubMed ID: 34766418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.