These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 33880851)
21. Proximal ligand control of heme iron coordination structure and reactivity with hydrogen peroxide: investigations of the myoglobin cavity mutant H93G with unnatural oxygen donor proximal ligands. Roach MP; Puspita WJ; Watanabe Y J Inorg Biochem; 2000 Aug; 81(3):173-82. PubMed ID: 11051562 [TBL] [Abstract][Full Text] [Related]
22. Repurposing myoglobin into a carbene transferase for a [2,3]-sigmatropic Sommelet-Hauser rearrangement. Pujol M; Degeilh L; Sauty de Chalon T; Réglier M; Simaan AJ; Decroos C J Inorg Biochem; 2024 Nov; 260():112688. PubMed ID: 39111220 [TBL] [Abstract][Full Text] [Related]
23. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Bhagi-Damodaran A; Reed JH; Zhu Q; Shi Y; Hosseinzadeh P; Sandoval BA; Harnden KA; Wang S; Sponholtz MR; Mirts EN; Dwaraknath S; Zhang Y; Moënne-Loccoz P; Lu Y Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6195-6200. PubMed ID: 29802230 [TBL] [Abstract][Full Text] [Related]
24. An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp Rumo C; Stein A; Klehr J; Tachibana R; Prescimone A; Häussinger D; Ward TR J Am Chem Soc; 2022 Jul; 144(26):11676-11684. PubMed ID: 35749305 [TBL] [Abstract][Full Text] [Related]
25. Stereoselective Cyclopropanation of Electron-Deficient Olefins with a Cofactor Redesigned Carbene Transferase Featuring Radical Reactivity. Carminati DM; Fasan R ACS Catal; 2019 Oct; 9(10):9683-9697. PubMed ID: 32257582 [TBL] [Abstract][Full Text] [Related]
26. An artificial metalloenzyme with the kinetics of native enzymes. Dydio P; Key HM; Nazarenko A; Rha JY; Seyedkazemi V; Clark DS; Hartwig JF Science; 2016 Oct; 354(6308):102-106. PubMed ID: 27846500 [TBL] [Abstract][Full Text] [Related]
27. Stable N-heterocyclic carbene (NHC)-palladium(0) complexes as active catalysts for olefin cyclopropanation reactions with ethyl diazoacetate. Martín C; Molina F; Alvarez E; Belderrain TR Chemistry; 2011 Dec; 17(52):14885-95. PubMed ID: 22139750 [TBL] [Abstract][Full Text] [Related]
28. Biocatalytic Carbene Transfer Using Diazirines. Porter NJ; Danelius E; Gonen T; Arnold FH J Am Chem Soc; 2022 May; 144(20):8892-8896. PubMed ID: 35561334 [TBL] [Abstract][Full Text] [Related]
29. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis. Chandgude AL; Fasan R Angew Chem Int Ed Engl; 2018 Nov; 57(48):15852-15856. PubMed ID: 30300955 [TBL] [Abstract][Full Text] [Related]
30. Effects of metal ions in the CuB center on the redox properties of heme in heme-copper oxidases: spectroelectrochemical studies of an engineered heme-copper center in myoglobin. Zhao X; Yeung N; Wang Z; Guo Z; Lu Y Biochemistry; 2005 Feb; 44(4):1210-4. PubMed ID: 15667214 [TBL] [Abstract][Full Text] [Related]
31. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins. Heel T; McIntosh JA; Dodani SC; Meyerowitz JT; Arnold FH Chembiochem; 2014 Nov; 15(17):2556-62. PubMed ID: 25294253 [TBL] [Abstract][Full Text] [Related]
32. Investigations of the myoglobin cavity mutant H93G with unnatural imidazole proximal ligands as a modular peroxide O-O bond cleavage model system. Roach MP; Ozaki S; Watanabe Y Biochemistry; 2000 Feb; 39(6):1446-54. PubMed ID: 10684626 [TBL] [Abstract][Full Text] [Related]
33. Computational design of myoglobin-based carbene transferases for monoterpene derivatization. Sun Y; Tang Y; Zhou J; Guo B; Yuan F; Yao B; Yu Y; Li C Biochem Biophys Res Commun; 2024 Aug; 722():150160. PubMed ID: 38795453 [TBL] [Abstract][Full Text] [Related]
34. Origin of high stereocontrol in olefin cyclopropanation catalyzed by an engineered carbene transferase. Tinoco A; Wei Y; Bacik JP; Carminati DM; Moore EJ; Ando N; Zhang Y; Fasan R ACS Catal; 2019 Feb; 9(2):1514-1524. PubMed ID: 31134138 [TBL] [Abstract][Full Text] [Related]
35. Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Hirota S; Lin YW J Biol Inorg Chem; 2018 Jan; 23(1):7-25. PubMed ID: 29218629 [TBL] [Abstract][Full Text] [Related]
36. Catalytic iron-carbene intermediate revealed in a cytochrome Lewis RD; Garcia-Borràs M; Chalkley MJ; Buller AR; Houk KN; Kan SBJ; Arnold FH Proc Natl Acad Sci U S A; 2018 Jul; 115(28):7308-7313. PubMed ID: 29946033 [TBL] [Abstract][Full Text] [Related]
37. Methandiide as a non-innocent ligand in carbene complexes: from the electronic structure to bond activation reactions and cooperative catalysis. Becker J; Modl T; Gessner VH Chemistry; 2014 Sep; 20(36):11295-9. PubMed ID: 25047390 [TBL] [Abstract][Full Text] [Related]
38. Myoglobins engineered with artificial cofactors serve as artificial metalloenzymes and models of natural enzymes. Oohora K; Hayashi T Dalton Trans; 2021 Feb; 50(6):1940-1949. PubMed ID: 33433532 [TBL] [Abstract][Full Text] [Related]
39. Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone. Nam D; Bacik JP; Khade RL; Aguilera MC; Wei Y; Villada JD; Neidig ML; Zhang Y; Ando N; Fasan R Nat Commun; 2023 Dec; 14(1):7985. PubMed ID: 38042860 [TBL] [Abstract][Full Text] [Related]
40. Hydroxylation of methane by non-heme diiron enzymes: molecular orbital analysis of C-H bond activation by reactive intermediate Q. Baik MH; Gherman BF; Friesner RA; Lippard SJ J Am Chem Soc; 2002 Dec; 124(49):14608-15. PubMed ID: 12465971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]