These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33880991)

  • 1. Creating and controlling visual environments using BonVision.
    Lopes G; Farrell K; Horrocks EA; Lee CY; Morimoto MM; Muzzu T; Papanikolaou A; Rodrigues FR; Wheatcroft T; Zucca S; Solomon SG; Saleem AB
    Elife; 2021 Apr; 10():. PubMed ID: 33880991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standardized and reproducible measurement of decision-making in mice.
    ; Aguillon-Rodriguez V; Angelaki D; Bayer H; Bonacchi N; Carandini M; Cazettes F; Chapuis G; Churchland AK; Dan Y; Dewitt E; Faulkner M; Forrest H; Haetzel L; Häusser M; Hofer SB; Hu F; Khanal A; Krasniak C; Laranjeira I; Mainen ZF; Meijer G; Miska NJ; Mrsic-Flogel TD; Murakami M; Noel JP; Pan-Vazquez A; Rossant C; Sanders J; Socha K; Terry R; Urai AE; Vergara H; Wells M; Wilson CJ; Witten IB; Wool LE; Zador AM
    Elife; 2021 May; 10():. PubMed ID: 34011433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stytra: An open-source, integrated system for stimulation, tracking and closed-loop behavioral experiments.
    Štih V; Petrucco L; Kist AM; Portugues R
    PLoS Comput Biol; 2019 Apr; 15(4):e1006699. PubMed ID: 30958870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EXPLAN--a programming language for complex visual stimuli presentation.
    Colucci R; Musio C; Taddei-Ferretti C
    Int J Biomed Comput; 1994 Sep; 37(1):29-39. PubMed ID: 7896435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computer programming for generating visual stimuli.
    Bukhari F; Kurylo DD
    Behav Res Methods; 2008 Feb; 40(1):38-45. PubMed ID: 18411525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CyberMedVPS: visual programming for development of simulators.
    Morais AM; Machado LS
    Stud Health Technol Inform; 2011; 163():386-8. PubMed ID: 21335824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed-Loop Behavioral Control Increases Coherence in the Fly Brain.
    Paulk AC; Kirszenblat L; Zhou Y; van Swinderen B
    J Neurosci; 2015 Jul; 35(28):10304-15. PubMed ID: 26180205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shady: A software engine for real-time visual stimulus manipulation.
    Hill NJ; Mooney SWJ; Ryklin EB; Prusky GT
    J Neurosci Methods; 2019 May; 320():79-86. PubMed ID: 30946876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai.
    Buccino AP; Lepperød ME; Dragly SA; Häfliger P; Fyhn M; Hafting T
    J Neural Eng; 2018 Oct; 15(5):055002. PubMed ID: 29946057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New Open-Source Tools: Using Bonsai for Behavioral Tracking and Closed-Loop Experiments.
    Lopes G; Monteiro P
    Front Behav Neurosci; 2021; 15():647640. PubMed ID: 33867952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SimBSI: An open-source Simulink library for developing closed-loop brain signal interfaces in animals and humans.
    Ojeda A; Buscher N; Balasubramani P; Maric V; Ramanathan D; Mishra J
    Biomed Phys Eng Express; 2020 Apr; 6(3):035023. PubMed ID: 33438668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Falcon: a highly flexible open-source software for closed-loop neuroscience.
    Ciliberti D; Kloosterman F
    J Neural Eng; 2017 Aug; 14(4):045004. PubMed ID: 28548044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PyGaze: an open-source, cross-platform toolbox for minimal-effort programming of eyetracking experiments.
    Dalmaijer ES; Mathôt S; Van der Stigchel S
    Behav Res Methods; 2014 Dec; 46(4):913-21. PubMed ID: 24258321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system.
    Douglas RM; Alam NM; Silver BD; McGill TJ; Tschetter WW; Prusky GT
    Vis Neurosci; 2005; 22(5):677-84. PubMed ID: 16332278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Representation of visual landmarks in retrosplenial cortex.
    Fischer LF; Mojica Soto-Albors R; Buck F; Harnett MT
    Elife; 2020 Mar; 9():. PubMed ID: 32154781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual landmarks facilitate rodent spatial navigation in virtual reality environments.
    Youngstrom IA; Strowbridge BW
    Learn Mem; 2012 Feb; 19(3):84-90. PubMed ID: 22345484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DXR: A Toolkit for Building Immersive Data Visualizations.
    Sicat R; Li J; Choi J; Cordeil M; Jeong WK; Bach B; Pfister H
    IEEE Trans Vis Comput Graph; 2019 Jan; 25(1):715-725. PubMed ID: 30136991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OpenSesame: an open-source, graphical experiment builder for the social sciences.
    Mathôt S; Schreij D; Theeuwes J
    Behav Res Methods; 2012 Jun; 44(2):314-24. PubMed ID: 22083660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Zebrafish Visual System: From Circuits to Behavior.
    Bollmann JH
    Annu Rev Vis Sci; 2019 Sep; 5():269-293. PubMed ID: 31525146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Binocular Imbalance with an Augmented Virtual Reality Platform in a Normal Population.
    Xu L; Huang M; Lan J; Huang W; Wang X; Zhang G; Li X; Shasha P; Chu H; Wiederhold BK; Wiederhold M; Yan L; Yang X; Zeng J
    Cyberpsychol Behav Soc Netw; 2019 Feb; 22(2):127-131. PubMed ID: 30779616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.