These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33881109)

  • 1. Correction: Topology of transition metal dichalcogenides: the case of the core-shell architecture.
    DiStefano JG; Murthy AA; Hao S; Dos Reis R; Wolverton C; Dravid VP
    Nanoscale; 2021 Apr; 13(16):7861. PubMed ID: 33881109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Topology of transition metal dichalcogenides: the case of the core-shell architecture.
    DiStefano JG; Murthy AA; Hao S; Dos Reis R; Wolverton C; Dravid VP
    Nanoscale; 2020 Dec; 12(47):23897-23919. PubMed ID: 33295919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Strategy for Engineering the Metal-Oxide@MOF Core@Shell Architecture and Its Applications in Cataluminescence Sensing.
    Huang X; Yan S; Deng D; Zhang L; Liu R; Lv Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3471-3480. PubMed ID: 33400483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of NiO Flakes@CoMoO
    Zhou E; Tian L; Cheng Z; Fu C
    Nanoscale Res Lett; 2019 Jul; 14(1):221. PubMed ID: 31267259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction: High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles.
    Dung NT; Long NV; Tam LTT; Nam PH; Tung LD; Phuc NX; Lu LT; Thanh NTK
    Nanoscale; 2017 Apr; 9(16):5352. PubMed ID: 28402381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction: Dynamic magnetic characterization and magnetic particle imaging enhancement of magnetic-gold core-shell nanoparticles.
    Tomitaka A; Ota S; Nishimoto K; Arami H; Takemura Y; Nair M
    Nanoscale; 2020 Oct; 12(39):20546. PubMed ID: 33016979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. van der Waals Metallic Transition Metal Dichalcogenides.
    Han GH; Duong DL; Keum DH; Yun SJ; Lee YH
    Chem Rev; 2018 Jul; 118(13):6297-6336. PubMed ID: 29957928
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.
    Cui Q; Zhao H
    ACS Nano; 2015 Apr; 9(4):3935-41. PubMed ID: 25765718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Universal Method for Large-Scale Synthesis of Layered Transition Metal Dichalcogenides.
    Sofer Z; Sedmidubský D; Luxa J; Bouša D; Huber Š; Lazar P; Veselý M; Pumera M
    Chemistry; 2017 Jul; 23(42):10177-10186. PubMed ID: 28543748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneous Electronic and Photonic Devices Based on Monolayer Ternary Telluride Core/Shell Structures.
    Xu K; Sharma A; Kang J; Hu X; Hao Z; Zhu W
    Adv Mater; 2020 Nov; 32(47):e2002548. PubMed ID: 33053229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tailoring Nanoscale Friction in MX2 Transition Metal Dichalcogenides.
    Cammarata A; Polcar T
    Inorg Chem; 2015 Jun; 54(12):5739-44. PubMed ID: 26000720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction: Discovery of intrinsic two-dimensional antiferromagnets from transition-metal borides.
    Wang S; Miao N; Su K; Blatov VA; Wang J
    Nanoscale; 2021 Jun; 13(21):9889. PubMed ID: 34019046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction.
    Cummins DR; Martinez U; Sherehiy A; Kappera R; Martinez-Garcia A; Schulze RK; Jasinski J; Zhang J; Gupta RK; Lou J; Chhowalla M; Sumanasekera G; Mohite AD; Sunkara MK; Gupta G
    Nat Commun; 2016 Jun; 7():11857. PubMed ID: 27282871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistive switching of Sn-doped In
    Huang CH; Chang WC; Huang JS; Lin SM; Chueh YL
    Nanoscale; 2017 May; 9(20):6920-6928. PubMed ID: 28509919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology Controlled Synthesis of γ-Al
    Han D; Lee D
    Nanomaterials (Basel); 2021 Jan; 11(2):. PubMed ID: 33530299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.
    Felts AC; Slimani A; Cain JM; Andrus MJ; Ahir AR; Abboud KA; Meisel MW; Boukheddaden K; Talham DR
    J Am Chem Soc; 2018 May; 140(17):5814-5824. PubMed ID: 29633838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correction: Suppression of metal-to-insulator transition using strong interfacial coupling at cubic and orthorhombic perovskite oxide heterointerfaces.
    Sohn W; Kim TL; Lee TH; Lee K; Yoon S; Kim C; Han S; Yoo JW; Roh KC; Kim M; Jang HW
    Nanoscale; 2021 Mar; 13(9):5145. PubMed ID: 33629705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascaded exciton energy transfer in a monolayer semiconductor lateral heterostructure assisted by surface plasmon polariton.
    Shi J; Lin MH; Chen IT; Mohammadi Estakhri N; Zhang XQ; Wang Y; Chen HY; Chen CA; Shih CK; Alù A; Li X; Lee YH; Gwo S
    Nat Commun; 2017 Jun; 8(1):35. PubMed ID: 28652572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the chemical and electronic properties of the core-shell architecture of transition metal trisulfide nanoribbons.
    King MO; Popland M; Denholme SJ; Gregory DH; MacLaren DA; Kadodwala M
    Nanoscale; 2012 Jan; 4(2):607-12. PubMed ID: 22147204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction: Core-shell Zn₂GeO₄ nanorods and their size-dependent photoluminescence properties.
    Wu S; Wang Z; Ouyang X; Lin Z
    Nanoscale; 2016 Mar; 8(12):6884. PubMed ID: 26940480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.