These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3388115)

  • 1. Response of the ligamentous lumbar spine to cyclic bending loads.
    Goel VK; Voo LM; Weinstein JN; Liu YK; Okuma T; Njus GO
    Spine (Phila Pa 1976); 1988 Mar; 13(3):294-300. PubMed ID: 3388115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator.
    Wilke HJ; Rohlmann A; Neller S; Schultheiss M; Bergmann G; Graichen F; Claes LE
    Spine (Phila Pa 1976); 2001 Mar; 26(6):636-42. PubMed ID: 11246374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.
    Naserkhaki S; Jaremko JL; Adeeb S; El-Rich M
    J Biomech; 2016 Apr; 49(6):974-982. PubMed ID: 26493346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injury mechanisms of the ligamentous cervical C2-C3 Functional Spinal Unit to complex loading modes: Finite Element study.
    Mustafy T; Moglo K; Adeeb S; El-Rich M
    J Mech Behav Biomed Mater; 2016 Jan; 53():384-396. PubMed ID: 26409229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of compressive axial preload on the flexibility of the thoracolumbar spine.
    Tawackoli W; Marco R; Liebschner MA
    Spine (Phila Pa 1976); 2004 May; 29(9):988-93. PubMed ID: 15105669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexion-extension response of the thoracolumbar spine under compressive follower preload.
    Stanley SK; Ghanayem AJ; Voronov LI; Havey RM; Paxinos O; Carandang G; Zindrick MR; Patwardhan AG
    Spine (Phila Pa 1976); 2004 Nov; 29(22):E510-4. PubMed ID: 15543052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of slouching and lumbar support on iliolumbar ligaments, intervertebral discs and sacroiliac joints.
    Snijders CJ; Hermans PF; Niesing R; Spoor CW; Stoeckart R
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):323-9. PubMed ID: 15109750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of injury on rotational coupling at the lumbosacral joint. A biomechanical investigation.
    Oxland TR; Crisco JJ; Panjabi MM; Yamamoto I
    Spine (Phila Pa 1976); 1992 Jan; 17(1):74-80. PubMed ID: 1531557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lumbar facet joint and intervertebral disc loading during simulated pelvic obliquity.
    Popovich JM; Welcher JB; Hedman TP; Tawackoli W; Anand N; Chen TC; Kulig K
    Spine J; 2013 Nov; 13(11):1581-9. PubMed ID: 23706384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of force and extensor moment contributions of the disc and ligaments at L4-L5.
    McGill SM
    Spine (Phila Pa 1976); 1988 Dec; 13(12):1395-402. PubMed ID: 3212573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relevance of using a compressive preload in the cervical spine: an experimental and numerical simulating investigation.
    Barrey C; Rousseau MA; Persohn S; Campana S; Perrin G; Skalli W
    Eur J Orthop Surg Traumatol; 2015 Jul; 25 Suppl 1():S155-65. PubMed ID: 25845316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamic flexion/extension properties of the lumbar spine in vitro using a novel pendulum system.
    Crisco JJ; Fujita L; Spenciner DB
    J Biomech; 2007; 40(12):2767-73. PubMed ID: 17367798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Loads in the spinal structures during lifting: development of a three-dimensional comprehensive biomechanical model.
    Han JS; Goel VK; Ahn JY; Winterbottom J; McGowan D; Weinstein J; Cook T
    Eur Spine J; 1995; 4(3):153-68. PubMed ID: 7552650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can extra-articular strains be used to measure facet contact forces in the lumbar spine? An in-vitro biomechanical study.
    Zhu QA; Park YB; Sjovold SG; Niosi CA; Wilson DC; Cripton PA; Oxland TR
    Proc Inst Mech Eng H; 2008 Feb; 222(2):171-84. PubMed ID: 18441753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimised loads for the simulation of axial rotation in the lumbar spine.
    Dreischarf M; Rohlmann A; Bergmann G; Zander T
    J Biomech; 2011 Aug; 44(12):2323-7. PubMed ID: 21703626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study.
    Fujiwara A; An HS; Lim TH; Haughton VM
    Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strength of the cervical spine in compression and bending.
    Przybyla AS; Skrzypiec D; Pollintine P; Dolan P; Adams MA
    Spine (Phila Pa 1976); 2007 Jul; 32(15):1612-20. PubMed ID: 17621208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lumbar spine mechanical response to axial compression load in vivo.
    Wisleder D; Smith MB; Mosher TJ; Zatsiorsky V
    Spine (Phila Pa 1976); 2001 Sep; 26(18):E403-9. PubMed ID: 11547210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.