These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3388115)

  • 21. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative role of disc degeneration and ligament failure on functional mechanics of the lumbar spine.
    Ellingson AM; Shaw MN; Giambini H; An KN
    Comput Methods Biomech Biomed Engin; 2016; 19(9):1009-18. PubMed ID: 26404463
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-dependent changes in the lumbar spine's resistance to bending.
    Adams MA; Dolan P
    Clin Biomech (Bristol, Avon); 1996 Jun; 11(4):194-200. PubMed ID: 11415620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preclinical testing of a wedge-rod system for fusionless correction of scoliosis.
    Betz RR; Cunningham B; Selgrath C; Drewry T; Sherman MC
    Spine (Phila Pa 1976); 2003 Oct; 28(20):S275-8. PubMed ID: 14560203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Torso flexion loads and the fatigue failure of human lumbosacral motion segments.
    Gallagher S; Marras WS; Litsky AS; Burr D
    Spine (Phila Pa 1976); 2005 Oct; 30(20):2265-73. PubMed ID: 16227888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments.
    Anderson DE; Mannen EM; Tromp R; Wong BM; Sis HL; Cadel ES; Friis EA; Bouxsein ML
    J Biomech; 2018 Mar; 70():262-266. PubMed ID: 29106896
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical evaluation of diagonal fixation in pedicle screw instrumentation.
    Lim TH; Kim JG; Fujiwara A; Yoon TT; Lee SC; Ha JW; An HS
    Spine (Phila Pa 1976); 2001 Nov; 26(22):2498-503. PubMed ID: 11707718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematics of the whole lumbar spine. Effect of discectomy.
    Goel VK; Goyal S; Clark C; Nishiyama K; Nye T
    Spine (Phila Pa 1976); 1985; 10(6):543-54. PubMed ID: 4081869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Moment measurements in dynamic and quasi-static spine segment testing using eccentric compression are susceptible to artifacts based on loading configuration.
    Van Toen C; Carter JW; Oxland TR; Cripton PA
    J Biomech Eng; 2014 Dec; 136(12):124505. PubMed ID: 25322158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Realistic loading conditions for upper body bending.
    Rohlmann A; Zander T; Rao M; Bergmann G
    J Biomech; 2009 May; 42(7):884-90. PubMed ID: 19268291
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimised in vitro applicable loads for the simulation of lateral bending in the lumbar spine.
    Dreischarf M; Rohlmann A; Bergmann G; Zander T
    Med Eng Phys; 2012 Jul; 34(6):777-80. PubMed ID: 22560004
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of motion segment level, Pfirrmann intervertebral disc degeneration grade and gender on lumbar spine kinematics.
    Muriuki MG; Havey RM; Voronov LI; Carandang G; Zindrick MR; Lorenz MA; Lomasney L; Patwardhan AG
    J Orthop Res; 2016 Aug; 34(8):1389-98. PubMed ID: 26990567
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional movements of the whole lumbar spine and lumbosacral joint.
    Yamamoto I; Panjabi MM; Crisco T; Oxland T
    Spine (Phila Pa 1976); 1989 Nov; 14(11):1256-60. PubMed ID: 2603060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model.
    Gillespie KA; Dickey JP
    Spine (Phila Pa 1976); 2004 Jun; 29(11):1208-16. PubMed ID: 15167660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The lumbar spine in backward bending.
    Adams MA; Dolan P; Hutton WC
    Spine (Phila Pa 1976); 1988 Sep; 13(9):1019-26. PubMed ID: 3206295
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Torsional stability of the lumbosacral junction. Significance of the iliolumbar ligament.
    Chow DH; Luk KD; Leong JC; Woo CW
    Spine (Phila Pa 1976); 1989 Jun; 14(6):611-5. PubMed ID: 2749377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine.
    Rohlmann A; Neller S; Claes L; Bergmann G; Wilke HJ
    Spine (Phila Pa 1976); 2001 Dec; 26(24):E557-61. PubMed ID: 11740371
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.
    Panjabi MM; Crisco JJ; Vasavada A; Oda T; Cholewicki J; Nibu K; Shin E
    Spine (Phila Pa 1976); 2001 Dec; 26(24):2692-700. PubMed ID: 11740357
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Load-displacement properties of the thoracolumbar calf spine: experimental results and comparison to known human data.
    Wilke HJ; Krischak ST; Wenger KH; Claes LE
    Eur Spine J; 1997; 6(2):129-37. PubMed ID: 9209882
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.