These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33881227)

  • 1. Supramolecular Sensing of Chemical Warfare Agents.
    Butera E; Zammataro A; Pappalardo A; Trusso Sfrazzetto G
    Chempluschem; 2021 Apr; 86(4):681-695. PubMed ID: 33881227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Sensing of a Chemical Warfare Agents Simulant by Functionalized Carbon Nanoparticles.
    Tuccitto N; Spitaleri L; Li Destri G; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges in Fluorescence Detection of Chemical Warfare Agent Vapors Using Solid-State Films.
    Fan S; Zhang G; Dennison GH; FitzGerald N; Burn PL; Gentle IR; Shaw PE
    Adv Mater; 2020 May; 32(18):e1905785. PubMed ID: 31692155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant.
    Jo S; Kim J; Noh J; Kim D; Jang G; Lee N; Lee E; Lee TS
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22884-93. PubMed ID: 25431844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supramolecular chemistry and chemical warfare agents: from fundamentals of recognition to catalysis and sensing.
    Sambrook MR; Notman S
    Chem Soc Rev; 2013 Dec; 42(24):9251-67. PubMed ID: 24048279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular recognition of a CWA simulant by metal-salen complexes: the first multi-topic approach.
    Puglisi R; Pappalardo A; Gulino A; Trusso Sfrazzetto G
    Chem Commun (Camb); 2018 Oct; 54(79):11156-11159. PubMed ID: 30226513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic insights into the luminescent sensing of organophosphorus chemical warfare agents and simulants using trivalent lanthanide complexes.
    Dennison GH; Johnston MR
    Chemistry; 2015 Apr; 21(17):6328-38. PubMed ID: 25649522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.
    Wang F; Gu H; Swager TM
    J Am Chem Soc; 2008 Apr; 130(16):5392-3. PubMed ID: 18373343
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Park JH; Song SG; Shin MH; Song C; Bae HY
    ACS Sens; 2022 Feb; 7(2):423-429. PubMed ID: 35119283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agile Detection of Chemical Warfare Agents by Machine Vision: a Supramolecular Approach.
    Tuccitto N; Catania G; Pappalardo A; Trusso Sfrazzetto G
    Chemistry; 2021 Oct; 27(55):13715-13718. PubMed ID: 34414611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors.
    Rajput SK; Mothika VS
    Macromol Rapid Commun; 2024 May; 45(10):e2300730. PubMed ID: 38407503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace Detection of Organophosphorus Chemical Warfare Agents in Wastewater and Plants by Luminescent UIO-67(Hf) and Evaluating the Bioaccumulation of Organophosphorus Chemical Warfare Agents.
    Lian X; Yan B
    ACS Appl Mater Interfaces; 2018 May; 10(17):14869-14876. PubMed ID: 29620847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of Ultrasensitive and Recyclable Dual-Channel Fluorescence Sensors for Chemical Warfare Agents Based on the State Dehybridization of Hybrid Locally Excited and Charge Transfer Materials.
    Li X; Lv Y; Chang S; Liu H; Mo W; Ma H; Zhou C; Zhang S; Yang B
    Anal Chem; 2019 Sep; 91(17):10927-10931. PubMed ID: 31305982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A rhodamine-deoxylactam based sensor for chromo-fluorogenic detection of nerve agent simulant.
    Wu Z; Wu X; Yang Y; Wen TB; Han S
    Bioorg Med Chem Lett; 2012 Oct; 22(20):6358-61. PubMed ID: 22995618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novichoks - The A group of organophosphorus chemical warfare agents.
    Kloske M; Witkiewicz Z
    Chemosphere; 2019 Apr; 221():672-682. PubMed ID: 30677728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescent sensors for the detection of chemical warfare agents.
    Burnworth M; Rowan SJ; Weder C
    Chemistry; 2007; 13(28):7828-36. PubMed ID: 17705326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent detection of chemical warfare agents: functional group specific ratiometric chemosensors.
    Zhang SW; Swager TM
    J Am Chem Soc; 2003 Mar; 125(12):3420-1. PubMed ID: 12643690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: a review.
    Upadhyayula VK
    Anal Chim Acta; 2012 Feb; 715():1-18. PubMed ID: 22244163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.
    Ma X; Zhu T; Xu H; Li G; Zheng J; Liu A; Zhang J; Du H
    Anal Bioanal Chem; 2008 Feb; 390(4):1133-7. PubMed ID: 18094961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.