These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33881436)

  • 21. Inclusion complexes of V-amylose with undecanoic acid and dodecanol at atomic resolution: X-ray structures with cycloamylose containing 26 D-glucoses (cyclohexaicosaose) as host.
    Nimz O; Gessler K; Usón I; Sheldrick GM; Saenger W
    Carbohydr Res; 2004 Jun; 339(8):1427-37. PubMed ID: 15178384
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural investigation of amylose complexes with small ligands: inter- or intra-helical associations?
    Rondeau-Mouro C; Le Bail P; Buléon A
    Int J Biol Macromol; 2004 Oct; 34(5):309-15. PubMed ID: 15556233
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position.
    Uto T; Nakamura S; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2020 Jul; 240():116347. PubMed ID: 32475598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vine-twining polymerization: a new preparation method for well-defined supramolecules composed of amylose and synthetic polymers.
    Kaneko Y; Kadokawa J
    Chem Rec; 2005; 5(1):36-46. PubMed ID: 15806555
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile preparation method for inclusion complexes between amylose and polytetrahydrofurans.
    Rachmawati R; Woortman AJ; Loos K
    Biomacromolecules; 2013 Feb; 14(2):575-83. PubMed ID: 23317375
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Starch-guest inclusion complexes: Formation, structure, and enzymatic digestion.
    Tan L; Kong L
    Crit Rev Food Sci Nutr; 2020; 60(5):780-790. PubMed ID: 30614266
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of amylose-polystyrene inclusion complexes by a facile preparation route.
    Kumar K; Woortman AJ; Loos K
    Biomacromolecules; 2013 Jun; 14(6):1955-60. PubMed ID: 23631590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physicochemical and drug release characteristics of acetylated starches of five Lagenaria siceraria cultivars.
    Kulkarni SD; Sinha BN; Kumar KJ
    Int J Biol Macromol; 2015 Jan; 72():1005-12. PubMed ID: 25453280
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative study of spring dextrin impact on amylose retrogradation.
    Xu J; Zhao W; Ning Y; Jin Z; Xu B; Xu X
    J Agric Food Chem; 2012 May; 60(19):4970-6. PubMed ID: 22536814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and thermal properties of amylose-fatty acid complexes prepared via high hydrostatic pressure.
    Guo Z; Jia X; Miao S; Chen B; Lu X; Zheng B
    Food Chem; 2018 Oct; 264():172-179. PubMed ID: 29853363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supermolecular structure of cellulose/amylose blends prepared from aqueous NaOH solutions and effects of amylose on structural formation of cellulose from its solution.
    Miyamoto H; Ago M; Yamane C; Seguchi M; Ueda K; Okajima K
    Carbohydr Res; 2011 May; 346(6):807-14. PubMed ID: 21392738
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and functional properties of amylose complexes with genistein.
    Cohen R; Orlova Y; Kovalev M; Ungar Y; Shimoni E
    J Agric Food Chem; 2008 Jun; 56(11):4212-8. PubMed ID: 18489110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy.
    Zhang Q; Lu Z; Hu H; Yang W; Marszalek PE
    J Am Chem Soc; 2006 Jul; 128(29):9387-93. PubMed ID: 16848474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inclusion Complexes Between Polytetrahydrofuran-b-Amylose Block Copolymers and Polytetrahydrofuran Chains.
    Rachmawati R; Woortman AJ; Kumar K; Loos K
    Macromol Biosci; 2015 Jun; 15(6):812-28. PubMed ID: 25706353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation.
    Zhi-Guang C; Hong-Hui Z; Keipper W; Hua-Yin P; Qi Y; Chen-Lu F; Guo-Wei S; Jun-Rong H
    Food Chem; 2020 Oct; 327():127047. PubMed ID: 32454269
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.
    Marinopoulou A; Papastergiadis E; Raphaelides SN; Kontominas MG
    Carbohydr Polym; 2016 May; 141():106-15. PubMed ID: 26877002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aqueous dissolution of crystalline and amorphous amylose-alcohol complexes.
    Whittam MA; Orford PD; Ring SG; Clark SA; Parker ML; Cairns P; Miles MJ
    Int J Biol Macromol; 1989 Dec; 11(6):339-44. PubMed ID: 2489102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of 2,3-di-O-alkylated amyloses: hydrophobic substitution destabilizes helical conformation.
    Breitinger HG
    Biopolymers; 2003 Jul; 69(3):301-10. PubMed ID: 12833257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Mechanism Underlying the Amylose-Zein Complexation Process and the Stability of the Molecular Conformation of Amylose-Zein Complexes in Water Based on Molecular Dynamics Simulation.
    Wang C; Ji N; Dai L; Qin Y; Shi R; Xiong L; Sun Q
    Foods; 2023 Mar; 12(7):. PubMed ID: 37048239
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.