These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 33881616)
1. The ciliate Paramecium bursaria allows budding of symbiotic Chlorella variabilis cells singly from the digestive vacuole membrane into the cytoplasm during algal reinfection. Kodama Y; Sumita H Protoplasma; 2022 Jan; 259(1):117-125. PubMed ID: 33881616 [TBL] [Abstract][Full Text] [Related]
2. Timing of perialgal vacuole membrane differentiation from digestive vacuole membrane in infection of symbiotic algae Chlorella vulgaris of the ciliate Paramecium bursaria. Kodama Y; Fujishima M Protist; 2009 Feb; 160(1):65-74. PubMed ID: 18715827 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of the digestive vacuole membrane of the alga-bearing ciliate Paramecium bursaria. Kodama Y; Fujishima M Protist; 2012 Jul; 163(4):658-70. PubMed ID: 22177452 [TBL] [Abstract][Full Text] [Related]
4. Secondary symbiosis between Paramecium and Chlorella cells. Kodama Y; Fujishima M Int Rev Cell Mol Biol; 2010; 279():33-77. PubMed ID: 20797676 [TBL] [Abstract][Full Text] [Related]
5. Symbiotic Chlorella variabilis incubated under constant dark conditions for 24 hours loses the ability to avoid digestion by host lysosomal enzymes in digestive vacuoles of host ciliate Paramecium bursaria. Kodama Y; Fujishima M FEMS Microbiol Ecol; 2014 Dec; 90(3):946-55. PubMed ID: 25348325 [TBL] [Abstract][Full Text] [Related]
6. Symbiotic Chlorella sp. of the ciliate Paramecium bursaria do not prevent acidification and lysosomal fusion of host digestive vacuoles during infection. Kodama Y; Fujishima M Protoplasma; 2005 Oct; 225(3-4):191-203. PubMed ID: 15997335 [TBL] [Abstract][Full Text] [Related]
7. Endosymbiosis of Chlorella species to the ciliate Paramecium bursaria alters the distribution of the host's trichocysts beneath the host cell cortex. Kodama Y; Fujishima M Protoplasma; 2011 Apr; 248(2):325-37. PubMed ID: 20582727 [TBL] [Abstract][Full Text] [Related]
8. Comparative Analyses of the Symbiotic Associations of the Host Paramecium bursaria with Free-Living and Native Symbiotic Species of Chlorella. Kodama Y; Endoh Y Curr Microbiol; 2024 Jan; 81(2):66. PubMed ID: 38231280 [TBL] [Abstract][Full Text] [Related]
9. Synchronous induction of detachment and reattachment of symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria. Kodama Y; Fujishima M Protist; 2013 Sep; 164(5):660-72. PubMed ID: 23912150 [TBL] [Abstract][Full Text] [Related]
10. Role of host ciliate Paramecium bursaria mitochondria and trichocysts for symbiotic Chlorella variabilis attachment beneath the host cell cortex. Kodama Y; Fujishima M FEMS Microbiol Lett; 2023 Jan; 370():. PubMed ID: 37660246 [TBL] [Abstract][Full Text] [Related]
11. Infectivity of Chlorella species for the ciliate Paramecium bursaria is not based on sugar residues of their cell wall components, but on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole in the early infection process. Kodama Y; Fujishima M Protoplasma; 2007; 231(1-2):55-63. PubMed ID: 17602279 [TBL] [Abstract][Full Text] [Related]
12. Endosymbiotic Chlorella variabilis reduces mitochondrial number in the ciliate Paramecium bursaria. Kodama Y; Fujishima M Sci Rep; 2022 May; 12(1):8216. PubMed ID: 35637201 [TBL] [Abstract][Full Text] [Related]
13. Symbiotic alga Chlorella vulgaris of the ciliate Paramecium bursaria shows temporary resistance to host lysosomal enzymes during the early infection process. Kodama Y; Nakahara M; Fujishima M Protoplasma; 2007; 230(1-2):61-7. PubMed ID: 17111098 [TBL] [Abstract][Full Text] [Related]
14. Cell division and density of symbiotic Chlorella variabilis of the ciliate Paramecium bursaria is controlled by the host's nutritional conditions during early infection process. Kodama Y; Fujishima M Environ Microbiol; 2012 Oct; 14(10):2800-11. PubMed ID: 22672708 [TBL] [Abstract][Full Text] [Related]
15. Cycloheximide induces synchronous swelling of perialgal vacuoles enclosing symbiotic Chlorella vulgaris and digestion of the algae in the ciliate Paramecium bursaria. Kodama Y; Fujishima M Protist; 2008 Jul; 159(3):483-94. PubMed ID: 18479967 [TBL] [Abstract][Full Text] [Related]
16. Autolysis of Chlorella variabilis in Starving Paramecium bursaria Help the Host Cell Survive Against Starvation Stress. Kodama Y; Miyazaki S Curr Microbiol; 2021 Feb; 78(2):558-565. PubMed ID: 33389061 [TBL] [Abstract][Full Text] [Related]
17. Comparative freeze-fracture study of perialgal and digestive vacuoles in Paramecium bursaria. Meier R; Lefort-Tran M; Pouphile M; Reisser W; Wiessner W J Cell Sci; 1984 Oct; 71():121-40. PubMed ID: 6520143 [TBL] [Abstract][Full Text] [Related]
18. OrbiSIMS Imaging Identifies Molecular Constituents of the Perialgal Vacuole Membrane of Aoyagi S; Kodama Y; Passarelli MK; Vorng JL; Kawashima T; Yoshikiyo K; Yamamoto T; Gilmore IS Anal Chem; 2019 Nov; 91(22):14545-14551. PubMed ID: 31621296 [TBL] [Abstract][Full Text] [Related]
19. Quantitative analysis of trichocysts in Paramecium bursaria following artificial removal and infection with the symbiotic Chlorella variabilis. Morita H; Kodama Y Eur J Protistol; 2024 Aug; 95():126115. PubMed ID: 39216315 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of digestive vacuole differentiation clarified by the observation of living Paramecium bursaria. Obayashi K; Kodama Y Protoplasma; 2024 Oct; ():. PubMed ID: 39379752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]