BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33881784)

  • 1. Molecular Origin of Blood-Based Infrared Spectroscopic Fingerprints*.
    Voronina L; Leonardo C; Mueller-Reif JB; Geyer PE; Huber M; Trubetskov M; Kepesidis KV; Behr J; Mann M; Krausz F; Žigman M
    Angew Chem Int Ed Engl; 2021 Jul; 60(31):17060-17069. PubMed ID: 33881784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer.
    Huber M; Kepesidis KV; Voronina L; Fleischmann F; Fill E; Hermann J; Koch I; Milger-Kneidinger K; Kolben T; Schulz GB; Jokisch F; Behr J; Harbeck N; Reiser M; Stief C; Krausz F; Zigman M
    Elife; 2021 Oct; 10():. PubMed ID: 34696827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of person-specific blood-based infrared molecular fingerprints opens up prospects for health monitoring.
    Huber M; Kepesidis KV; Voronina L; Božić M; Trubetskov M; Harbeck N; Krausz F; Žigman M
    Nat Commun; 2021 Mar; 12(1):1511. PubMed ID: 33686065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and Deep Diagnosis Using Blood-Based ATR-FTIR Spectroscopy for Digestive Tract Cancers.
    Guo S; Wei G; Chen W; Lei C; Xu C; Guan Y; Ji T; Wang F; Liu H
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive detection of superimposed latent fingerprints and inter-ridge trace evidence by infrared spectroscopic imaging.
    Bhargava R; Perlman RS; Fernandez DC; Levin IW; Bartick EG
    Anal Bioanal Chem; 2009 Aug; 394(8):2069-75. PubMed ID: 19415243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared spectroscopic imaging of latent fingerprints and associated forensic evidence.
    Chen T; Schultz ZD; Levin IW
    Analyst; 2009 Sep; 134(9):1902-4. PubMed ID: 19684917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of latent fingerprint deposits by infrared microspectroscopy.
    Williams DK; Schwartz RL; Bartick EG
    Appl Spectrosc; 2004 Mar; 58(3):313-6. PubMed ID: 15035712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Machine Learning Protocol for Predicting Protein Infrared Spectra.
    Ye S; Zhong K; Zhang J; Hu W; Hirst JD; Zhang G; Mukamel S; Jiang J
    J Am Chem Soc; 2020 Nov; 142(45):19071-19077. PubMed ID: 33126795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of recently handled materials by analysis of latent human fingerprints using infrared spectromicroscopy.
    Grant A; Wilkinson TJ; Holman DR; Martin MC
    Appl Spectrosc; 2005 Sep; 59(9):1182-7. PubMed ID: 16197643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of multivariate data-analysis techniques to biomedical diagnostics based on mid-infrared spectroscopy.
    Wang L; Mizaikoff B
    Anal Bioanal Chem; 2008 Jul; 391(5):1641-54. PubMed ID: 18379763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Combined Near-Infrared and Mid-Infrared Spectroscopic Approach for the Detection and Quantification of Glycine in Human Serum.
    Veettil TCP; Wood BR
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopic imaging for noninvasive detection of latent fingerprints.
    Crane NJ; Bartick EG; Perlman RS; Huffman S
    J Forensic Sci; 2007 Jan; 52(1):48-53. PubMed ID: 17209909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical imaging of latent fingerprint residues.
    Ricci C; Phiriyavityopas P; Curum N; Chan KL; Jickells S; Kazarian SG
    Appl Spectrosc; 2007 May; 61(5):514-22. PubMed ID: 17555621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and identification of explosive particles in fingerprints using attenuated total reflection-Fourier transform infrared spectromicroscopy.
    Mou Y; Rabalais JW
    J Forensic Sci; 2009 Jul; 54(4):846-50. PubMed ID: 19457149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free Identification of Antibody-mediated Rejection in Cardiac Allograft Biopsies Using Infrared Spectroscopic Imaging.
    Uraizee I; Varma VK; Sreedhar H; Gambacorta F; Nazeer SS; Husain A; Walsh MJ
    Transplantation; 2019 Apr; 103(4):698-704. PubMed ID: 30278018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of DNA and protein from individual latent fingerprints for forensic analysis.
    Schulte KQ; Hewitt FC; Manley TE; Reed AJ; Baniasad M; Albright NC; Powals ME; LeSassier DS; Smith AR; Zhang L; Allen LW; Ludolph BC; Weber KL; Woerner AE; Freitas MA; Gardner MW
    Forensic Sci Int Genet; 2021 Jan; 50():102405. PubMed ID: 33152624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of spectroscopic and proteomic alterations underlying prostate carcinogenesis.
    Felgueiras J; Silva JV; Nunes A; Fernandes I; Patrício A; Maia N; Pelech S; Fardilha M
    J Proteomics; 2020 Aug; 226():103888. PubMed ID: 32619771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AI-based spectroscopic monitoring of real-time interactions between SARS-CoV-2 and human ACE2.
    Ye S; Zhang G; Jiang J
    Proc Natl Acad Sci U S A; 2021 Jun; 118(26):. PubMed ID: 34185681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of ovarian tumor pathology by Fourier Transform Infrared Spectroscopy.
    Mehrotra R; Tyagi G; Jangir DK; Dawar R; Gupta N
    J Ovarian Res; 2010 Dec; 3():27. PubMed ID: 21176143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing Tissue Fixation Time and Quality with Label-free Mid Infrared Spectroscopy and Machine Learning.
    Bauer DR; Chafin DR
    Biopreserv Biobank; 2023 Apr; 21(2):208-216. PubMed ID: 36516138
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.