BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33881836)

  • 1. Pyridazine Nucleobase in Triplex-Forming PNA Improves Recognition of Cytosine Interruptions of Polypurine Tracts in RNA.
    Brodyagin N; Kumpina I; Applegate J; Katkevics M; Rozners E
    ACS Chem Biol; 2021 May; 16(5):872-881. PubMed ID: 33881836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 2-Guanidyl pyridine PNA nucleobase for triple-helical Hoogsteen recognition of cytosine in double-stranded RNA.
    Ryan CA; Baskevics V; Katkevics M; Rozners E
    Chem Commun (Camb); 2022 Jun; 58(51):7148-7151. PubMed ID: 35666682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of thio-pseudoisocytosine into triplex-forming peptide nucleic acids for enhanced recognition of RNA duplexes.
    Devi G; Yuan Z; Lu Y; Zhao Y; Chen G
    Nucleic Acids Res; 2014 Apr; 42(6):4008-18. PubMed ID: 24423869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleobase and Linker Modification for Triple-Helical Recognition of Pyrimidines in RNA Using Peptide Nucleic Acids.
    Kumpina I; Baskevics V; Nguyen KD; Katkevics M; Rozners E
    Chembiochem; 2023 Aug; 24(15):e202300291. PubMed ID: 37321971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and RNA-Binding Properties of Extended Nucleobases for Triplex-Forming Peptide Nucleic Acids.
    Kumpina I; Brodyagin N; MacKay JA; Kennedy SD; Katkevics M; Rozners E
    J Org Chem; 2019 Nov; 84(21):13276-13298. PubMed ID: 31538780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleobase-Modified Triplex-Forming Peptide Nucleic Acids for Sequence-Specific Recognition of Double-Stranded RNA.
    Brodyagin N; Hnedzko D; MacKay JA; Rozners E
    Methods Mol Biol; 2020; 2105():157-172. PubMed ID: 32088869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The 2-Aminopyridine Nucleobase Improves Triple-Helical Recognition of RNA and DNA When Used Instead of Pseudoisocytosine in Peptide Nucleic Acids.
    Ryan CA; Brodyagin N; Lok J; Rozners E
    Biochemistry; 2021 Jun; 60(24):1919-1925. PubMed ID: 34097400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using triple-helix-forming Peptide nucleic acids for sequence-selective recognition of double-stranded RNA.
    Hnedzko D; Cheruiyot SK; Rozners E
    Curr Protoc Nucleic Acid Chem; 2014 Sep; 58():4.60.1-23. PubMed ID: 25199637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating uracil and 5-halouracils into short peptide nucleic acids for enhanced recognition of A-U pairs in dsRNAs.
    Patil KM; Toh DK; Yuan Z; Meng Z; Shu Z; Zhang H; Ong AAL; Krishna MS; Lu L; Lu Y; Chen G
    Nucleic Acids Res; 2018 Sep; 46(15):7506-7521. PubMed ID: 30011039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence-specific recognition of structured RNA by triplex-forming peptide nucleic acids.
    Hnedzko D; Rozners E
    Methods Enzymol; 2019; 623():401-416. PubMed ID: 31239055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.
    Kotikam V; Kennedy SD; MacKay JA; Rozners E
    Chemistry; 2019 Mar; 25(17):4367-4372. PubMed ID: 30746843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. General Recognition of U-G, U-A, and C-G Pairs by Double-Stranded RNA-Binding PNAs Incorporated with an Artificial Nucleobase.
    Ong AAL; Toh DK; Patil KM; Meng Z; Yuan Z; Krishna MS; Devi G; Haruehanroengra P; Lu Y; Xia K; Okamura K; Sheng J; Chen G
    Biochemistry; 2019 Mar; 58(10):1319-1331. PubMed ID: 30775913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short pyrimidine stretches containing mixed base PNAs are versatile tools to induce translation elongation arrest and truncated protein synthesis.
    Sénamaud-Beaufort C; Leforestier E; Saison-Behmoaras TE
    Oligonucleotides; 2003; 13(6):465-78. PubMed ID: 15025913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Triplex-Forming Isoorotamide PNA Nucleobases for A-U Recognition of RNA Duplexes.
    Talbott JM; Tessier BR; Harding EE; Walby GD; Hess KJ; Baskevics V; Katkevics M; Rozners E; MacKay JA
    Chemistry; 2023 Nov; 29(64):e202302390. PubMed ID: 37647091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence-selective recognition of double-stranded RNA and enhanced cellular uptake of cationic nucleobase and backbone-modified peptide nucleic acids.
    Hnedzko D; McGee DW; Karamitas YA; Rozners E
    RNA; 2017 Jan; 23(1):58-69. PubMed ID: 27742909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic, thermodynamic and kinetic analysis of selective triplex formation by peptide nucleic acid with double-stranded RNA over its DNA counterpart.
    Sato T; Sato Y; Nishizawa S
    Biopolymers; 2022 Jan; 113(1):e23474. PubMed ID: 34478151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporating a guanidine-modified cytosine base into triplex-forming PNAs for the recognition of a C-G pyrimidine-purine inversion site of an RNA duplex.
    Toh DK; Devi G; Patil KM; Qu Q; Maraswami M; Xiao Y; Loh TP; Zhao Y; Chen G
    Nucleic Acids Res; 2016 Nov; 44(19):9071-9082. PubMed ID: 27596599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorobenzene Nucleobase Analogues for Triplex-Forming Peptide Nucleic Acids.
    Kumar V; Rozners E
    Chembiochem; 2022 Feb; 23(3):e202100560. PubMed ID: 34889020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids.
    Toh DK; Patil KM; Chen G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleobase-Modified PNA Suppresses Translation by Forming a Triple Helix with a Hairpin Structure in mRNA In Vitro and in Cells.
    Endoh T; Hnedzko D; Rozners E; Sugimoto N
    Angew Chem Int Ed Engl; 2016 Jan; 55(3):899-903. PubMed ID: 26473504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.