These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 33881867)
1. Why Lithium Ions Stick to Some Anions and Not Others. Lytle TK; Muralidharan A; Yethiraj A J Phys Chem B; 2021 May; 125(17):4447-4455. PubMed ID: 33881867 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Lithium-Ion Conductivity of Polymer Electrolytes by Selective Introduction of Hydrogen into the Anion. Zhang H; Oteo U; Zhu H; Judez X; Martinez-Ibañez M; Aldalur I; Sanchez-Diez E; Li C; Carrasco J; Forsyth M; Armand M Angew Chem Int Ed Engl; 2019 Jun; 58(23):7829-7834. PubMed ID: 30652396 [TBL] [Abstract][Full Text] [Related]
3. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane. Fernicola A; Weise FC; Greenbaum SG; Kagimoto J; Scrosati B; Soleto A J Electrochem Soc; 2009 May; 156(7):A514-A520. PubMed ID: 20354582 [TBL] [Abstract][Full Text] [Related]
4. Effect of anion identity on ion association and dynamics of sodium ions in non-aqueous glyme based electrolytes-OTf vs TFSI. Li K; Subasinghege Don V; Gupta CS; David R; Kumar R J Chem Phys; 2021 May; 154(18):184505. PubMed ID: 34241024 [TBL] [Abstract][Full Text] [Related]
5. Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI- ionic liquids. Borodin O; Smith GD; Henderson W J Phys Chem B; 2006 Aug; 110(34):16879-86. PubMed ID: 16927976 [TBL] [Abstract][Full Text] [Related]
6. Asymmetric Composition of Ionic Aggregates and the Origin of High Correlated Transference Number in Water-in-Salt Electrolytes. Yu Z; Curtiss LA; Winans RE; Zhang Y; Li T; Cheng L J Phys Chem Lett; 2020 Feb; 11(4):1276-1281. PubMed ID: 31951143 [TBL] [Abstract][Full Text] [Related]
7. Plasticized Polymer Composite Single-Ion Conductors for Lithium Batteries. Zhao H; Asfour F; Fu Y; Jia Z; Yuan W; Bai Y; Ling M; Hu H; Baker G; Liu G ACS Appl Mater Interfaces; 2015 Sep; 7(34):19494-9. PubMed ID: 26284984 [TBL] [Abstract][Full Text] [Related]
8. In Situ Species Analysis of a Lithium-Ion Battery Electrolyte Containing LiTFSI and Propylene Carbonate. Wang YQ; Xu H; Cao B; Ma J; Yu ZW J Phys Chem Lett; 2024 May; 15(19):5047-5055. PubMed ID: 38701394 [TBL] [Abstract][Full Text] [Related]
9. Understanding Structural and Transport Properties of Dissolved Li Hu T; Wang Y; Huo F; He H; Zhang S Chemphyschem; 2021 Feb; 22(4):419-429. PubMed ID: 33502098 [TBL] [Abstract][Full Text] [Related]
10. Li+ transport in lithium sulfonylimide-oligo(ethylene oxide) ionic liquids and oligo(ethylene oxide) doped with LiTFSI. Borodin O; Smith GD; Geiculescu O; Creager SE; Hallac B; DesMarteau D J Phys Chem B; 2006 Nov; 110(47):24266-74. PubMed ID: 17125400 [TBL] [Abstract][Full Text] [Related]
11. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure. Borodin O; Ren X; Vatamanu J; von Wald Cresce A; Knap J; Xu K Acc Chem Res; 2017 Dec; 50(12):2886-2894. PubMed ID: 29164857 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature. Lin X; Chapman Varela J; Grinstaff MW J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060272 [TBL] [Abstract][Full Text] [Related]
13. Water-In-Salt LiTFSI Aqueous Electrolytes (2): Transport Properties and Li Zhang Y; Maginn EJ J Phys Chem B; 2021 Dec; 125(48):13246-13254. PubMed ID: 34813336 [TBL] [Abstract][Full Text] [Related]
14. Rational Design of an Ionic Liquid-Based Electrolyte with High Ionic Conductivity Towards Safe Lithium/Lithium-Ion Batteries. Zhang S; Li J; Jiang N; Li X; Pasupath S; Fang Y; Liu Q; Dang D Chem Asian J; 2019 Aug; 14(16):2810-2814. PubMed ID: 31242343 [TBL] [Abstract][Full Text] [Related]
15. Polymer-ionic liquid ternary systems for Li-battery electrolytes: Molecular dynamics studies of LiTFSI in a EMIm-TFSI and PEO blend. Costa LT; Sun B; Jeschull F; Brandell D J Chem Phys; 2015 Jul; 143(2):024904. PubMed ID: 26178124 [TBL] [Abstract][Full Text] [Related]
16. Ion-Conductive and Thermal Properties of a Synergistic Poly(ethylene carbonate)/Poly(trimethylene carbonate) Blend Electrolyte. Li Z; Mogensen R; Mindemark J; Bowden T; Brandell D; Tominaga Y Macromol Rapid Commun; 2018 Jul; 39(14):e1800146. PubMed ID: 29748986 [TBL] [Abstract][Full Text] [Related]
17. LiTFSI structure and transport in ethylene carbonate from molecular dynamics simulations. Borodin O; Smith GD J Phys Chem B; 2006 Mar; 110(10):4971-7. PubMed ID: 16526738 [TBL] [Abstract][Full Text] [Related]
18. Development of a Polarizable Force Field for Molecular Dynamics Simulations of Lithium-Ion Battery Electrolytes: Sulfone-Based Solvents and Lithium Salts. Starovoytov ON J Phys Chem B; 2021 Oct; 125(40):11242-11255. PubMed ID: 34586817 [TBL] [Abstract][Full Text] [Related]
19. Charge Transport in [Li(tetraglyme)][bis(trifluoromethane) sulfonimide] Solvate Ionic Liquids: Insight from Molecular Dynamics Simulations. Dong D; Bedrov D J Phys Chem B; 2018 Nov; 122(43):9994-10004. PubMed ID: 30299097 [TBL] [Abstract][Full Text] [Related]
20. Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped Oligoether, polyether, and carbonate-based electrolytes. Borodin O; Smith GD J Phys Chem B; 2006 Mar; 110(12):6293-9. PubMed ID: 16553447 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]