These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 33882307)

  • 41. Postnatal Maturation of Membrane Potential Dynamics during
    Noguchi A; Matsumoto N; Ikegaya Y
    J Neurosci; 2023 Aug; 43(35):6126-6140. PubMed ID: 37400254
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct Medial Entorhinal Cortex Input to Hippocampal CA1 Is Crucial for Extended Quiet Awake Replay.
    Yamamoto J; Tonegawa S
    Neuron; 2017 Sep; 96(1):217-227.e4. PubMed ID: 28957670
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Coordinated Interaction between Hippocampal Sharp-Wave Ripples and Anterior Cingulate Unit Activity.
    Wang DV; Ikemoto S
    J Neurosci; 2016 Oct; 36(41):10663-10672. PubMed ID: 27733616
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CA3 hippocampal synaptic plasticity supports ripple physiology during memory consolidation.
    El Oussini H; Zhang CL; François U; Castelli C; Lampin-Saint-Amaux A; Lepleux M; Molle P; Velez L; Dejean C; Lanore F; Herry C; Choquet D; Humeau Y
    Nat Commun; 2023 Dec; 14(1):8312. PubMed ID: 38097535
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Long-duration hippocampal sharp wave ripples improve memory.
    Fernández-Ruiz A; Oliva A; Fermino de Oliveira E; Rocha-Almeida F; Tingley D; Buzsáki G
    Science; 2019 Jun; 364(6445):1082-1086. PubMed ID: 31197012
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events.
    Jadhav SP; Rothschild G; Roumis DK; Frank LM
    Neuron; 2016 Apr; 90(1):113-27. PubMed ID: 26971950
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spatiotemporal patterns of neocortical activity around hippocampal sharp-wave ripples.
    Karimi Abadchi J; Nazari-Ahangarkolaee M; Gattas S; Bermudez-Contreras E; Luczak A; McNaughton BL; Mohajerani MH
    Elife; 2020 Mar; 9():. PubMed ID: 32167467
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hippocampal sharp wave-ripples and the associated sequence replay emerge from structured synaptic interactions in a network model of area CA3.
    Ecker A; Bagi B; Vértes E; Steinbach-Németh O; Karlócai MR; Papp OI; Miklós I; Hájos N; Freund TF; Gulyás AI; Káli S
    Elife; 2022 Jan; 11():. PubMed ID: 35040779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposing and Complementary Topographic Connectivity Gradients Revealed by Quantitative Analysis of Canonical and Noncanonical Hippocampal CA1 Inputs.
    Sun Y; Nitz DA; Holmes TC; Xu X
    eNeuro; 2018; 5(1):. PubMed ID: 29387780
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway.
    Nitzan N; McKenzie S; Beed P; English DF; Oldani S; Tukker JJ; Buzsáki G; Schmitz D
    Nat Commun; 2020 Apr; 11(1):1947. PubMed ID: 32327634
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.
    Zemankovics R; Veres JM; Oren I; Hájos N
    J Neurosci; 2013 Jul; 33(30):12337-51. PubMed ID: 23884940
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanisms of Neuronal Reactivation in Memory Consolidation: A Perspective from Pathological Conditions.
    Xiang LY; Chen XY; Lu LM; Kong MH; Ji Q; Xiong Y; Xie MM; Jian XL; Zhu ZR
    Neuroscience; 2024 Jul; 551():196-204. PubMed ID: 38810690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The expanded circuitry of hippocampal ripples and replay.
    He H; Guan H; McHugh TJ
    Neurosci Res; 2023 Apr; 189():13-19. PubMed ID: 36572253
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time Cells in the Hippocampus Are Neither Dependent on Medial Entorhinal Cortex Inputs nor Necessary for Spatial Working Memory.
    Sabariego M; Schönwald A; Boublil BL; Zimmerman DT; Ahmadi S; Gonzalez N; Leibold C; Clark RE; Leutgeb JK; Leutgeb S
    Neuron; 2019 Jun; 102(6):1235-1248.e5. PubMed ID: 31056352
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibitory control of sharp-wave ripple duration during learning in hippocampal recurrent networks.
    Vancura B; Geiller T; Grosmark A; Zhao V; Losonczy A
    Nat Neurosci; 2023 May; 26(5):788-797. PubMed ID: 37081295
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CA1-projecting subiculum neurons facilitate object-place learning.
    Sun Y; Jin S; Lin X; Chen L; Qiao X; Jiang L; Zhou P; Johnston KG; Golshani P; Nie Q; Holmes TC; Nitz DA; Xu X
    Nat Neurosci; 2019 Nov; 22(11):1857-1870. PubMed ID: 31548723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A hippocampal circuit mechanism to balance memory reactivation during sleep.
    Karaba LA; Robinson HL; Harvey RE; Chen W; Fernandez-Ruiz A; Oliva A
    Science; 2024 Aug; 385(6710):738-743. PubMed ID: 39146421
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CA3 place cells that represent a novel waking experience are preferentially reactivated during sharp wave-ripples in subsequent sleep.
    Hwaun E; Colgin LL
    Hippocampus; 2019 Oct; 29(10):921-938. PubMed ID: 30891854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Selective activation of deep layer (V-VI) retrohippocampal cortical neurons during hippocampal sharp waves in the behaving rat.
    Chrobak JJ; Buzsáki G
    J Neurosci; 1994 Oct; 14(10):6160-70. PubMed ID: 7931570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pretreatment with β-adrenergic receptor agonists facilitates induction of LTP and sharp wave ripple complexes in rodent hippocampus.
    Ul Haq R; Anderson M; Liotta A; Shafiq M; Sherkheli MA; Heinemann U
    Hippocampus; 2016 Dec; 26(12):1486-1492. PubMed ID: 27699900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.