These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33882419)

  • 1. A deep learning based surrogate model for the parameter identification problem in probabilistic cellular automaton epidemic models.
    Pereira FH; Schimit PHT; Bezerra FE
    Comput Methods Programs Biomed; 2021 Jun; 205():106078. PubMed ID: 33882419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter.
    Ganyani T; Faes C; Chowell G; Hens N
    Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially-implicit modelling of disease-behaviour interactions in the context of non-pharmaceutical interventions.
    Ringa N; Bauch CT
    Math Biosci Eng; 2018 Apr; 15(2):461-483. PubMed ID: 29161845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the Malthusian parameter in an stochastic epidemic model using martingale methods.
    Lindenstrand D; Svensson Å
    Math Biosci; 2013 Dec; 246(2):272-9. PubMed ID: 24427788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the basic reproduction number from surveillance data on past epidemics.
    Froda S; Leduc H
    Math Biosci; 2014 Oct; 256():89-101. PubMed ID: 25168169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the final size of epidemics in random environment.
    Ed-Darraz A; Khaladi M
    Math Biosci; 2015 Aug; 266():10-4. PubMed ID: 26013291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast calculating surrogate models for leg and head impact in vehicle-pedestrian collision simulations.
    Wimmer P; Benedikt M; Huber P; Ferenczi I
    Traffic Inj Prev; 2015; 16 Suppl 1():S84-90. PubMed ID: 26027979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating the basic reproduction number from noisy daily data.
    Descary MH; Froda S
    J Theor Biol; 2022 Sep; 549():111210. PubMed ID: 35788342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards uncertainty quantification and inference in the stochastic SIR epidemic model.
    Capistrán MA; Christen JA; Velasco-Hernández JX
    Math Biosci; 2012 Dec; 240(2):250-9. PubMed ID: 22989951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic reproduction number of SEIRS model on regular lattice.
    Sato K
    Math Biosci Eng; 2019 Jul; 16(6):6708-6727. PubMed ID: 31698584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemic Landscape and Forecasting of SARS-CoV-2 in India.
    Rajendrakumar AL; Nair ATN; Nangia C; Chourasia PK; Chourasia MK; Syed MG; Nair AS; Nair AB; Koya MSF
    J Epidemiol Glob Health; 2021 Mar; 11(1):55-59. PubMed ID: 32959618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the within-household infection rate in emerging SIR epidemics among a community of households.
    Ball F; Shaw L
    J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracting cellular automaton rules from physical Langevin equation models for single and collective cell migration.
    Nava-Sedeño JM; Hatzikirou H; Peruani F; Deutsch A
    J Math Biol; 2017 Nov; 75(5):1075-1100. PubMed ID: 28243720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic reproduction number, R
    Neal P; Theparod T
    Math Biosci; 2019 Sep; 315():108224. PubMed ID: 31276681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The risk index for an SIR epidemic model and spatial spreading of the infectious disease.
    Zhu M; Guo X; Lin Z
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1565-1583. PubMed ID: 29161876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of groundwater contamination sources and hydraulic parameters based on bayesian regularization deep neural network.
    Pan Z; Lu W; Fan Y; Li J
    Environ Sci Pollut Res Int; 2021 Apr; 28(13):16867-16879. PubMed ID: 33398760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Edge-Based Compartmental Modelling of an SIR Epidemic on a Dual-Layer Static-Dynamic Multiplex Network with Tunable Clustering.
    Barnard RC; Kiss IZ; Berthouze L; Miller JC
    Bull Math Biol; 2018 Oct; 80(10):2698-2733. PubMed ID: 30136212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The epidemic model based on the approximation for third-order motifs on networks.
    Li J; Li W; Jin Z
    Math Biosci; 2018 Mar; 297():12-26. PubMed ID: 29330075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning method for image-based subject-specific local SAR assessment.
    Meliadò EF; Raaijmakers AJE; Sbrizzi A; Steensma BR; Maspero M; Savenije MHF; Luijten PR; van den Berg CAT
    Magn Reson Med; 2020 Feb; 83(2):695-711. PubMed ID: 31483521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning approach for sepsis monitoring via severity score estimation.
    Aşuroğlu T; Oğul H
    Comput Methods Programs Biomed; 2021 Jan; 198():105816. PubMed ID: 33157471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.