BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 33882692)

  • 1. NAD
    Tong D; Schiattarella GG; Jiang N; Altamirano F; Szweda PA; Elnwasany A; Lee DI; Yoo H; Kass DA; Szweda LI; Lavandero S; Verdin E; Gillette TG; Hill JA
    Circ Res; 2021 May; 128(11):1629-1641. PubMed ID: 33882692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylation of mitochondrial proteins by GCN5L1 promotes enhanced fatty acid oxidation in the heart.
    Thapa D; Zhang M; Manning JR; Guimarães DA; Stoner MW; O'Doherty RM; Shiva S; Scott I
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H265-H274. PubMed ID: 28526709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity.
    Cantó C; Houtkooper RH; Pirinen E; Youn DY; Oosterveer MH; Cen Y; Fernandez-Marcos PJ; Yamamoto H; Andreux PA; Cettour-Rose P; Gademann K; Rinsch C; Schoonjans K; Sauve AA; Auwerx J
    Cell Metab; 2012 Jun; 15(6):838-47. PubMed ID: 22682224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Mitochondria-Inflammation Circuit by β-Hydroxybutyrate Mitigates HFpEF.
    Deng Y; Xie M; Li Q; Xu X; Ou W; Zhang Y; Xiao H; Yu H; Zheng Y; Liang Y; Jiang C; Chen G; Du D; Zheng W; Wang S; Gong M; Chen Y; Tian R; Li T
    Circ Res; 2021 Jan; 128(2):232-245. PubMed ID: 33176578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling.
    Alrob OA; Sankaralingam S; Ma C; Wagg CS; Fillmore N; Jaswal JS; Sack MN; Lehner R; Gupta MP; Michelakis ED; Padwal RS; Johnstone DE; Sharma AM; Lopaschuk GD
    Cardiovasc Res; 2014 Sep; 103(4):485-97. PubMed ID: 24966184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein acetylation in skeletal muscle mitochondria is involved in impaired fatty acid oxidation and exercise intolerance in heart failure.
    Tsuda M; Fukushima A; Matsumoto J; Takada S; Kakutani N; Nambu H; Yamanashi K; Furihata T; Yokota T; Okita K; Kinugawa S; Anzai T
    J Cachexia Sarcopenia Muscle; 2018 Oct; 9(5):844-859. PubMed ID: 30168279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nicotinamide Riboside, an NAD + Precursor, Protects Against Cardiac Mitochondrial Dysfunction in Fetal Guinea Pigs Exposed to Gestational Hypoxia.
    Thompson LP; Song H; Hartnett J
    Reprod Sci; 2024 Apr; 31(4):975-986. PubMed ID: 37957471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure.
    Zhou B; Wang DD; Qiu Y; Airhart S; Liu Y; Stempien-Otero A; O'Brien KD; Tian R
    J Clin Invest; 2020 Nov; 130(11):6054-6063. PubMed ID: 32790648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-term administration of Nicotinamide Mononucleotide preserves cardiac mitochondrial homeostasis and prevents heart failure.
    Zhang R; Shen Y; Zhou L; Sangwung P; Fujioka H; Zhang L; Liao X
    J Mol Cell Cardiol; 2017 Nov; 112():64-73. PubMed ID: 28882480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sirtuin 3 (SIRT3) protein regulates long-chain acyl-CoA dehydrogenase by deacetylating conserved lysines near the active site.
    Bharathi SS; Zhang Y; Mohsen AW; Uppala R; Balasubramani M; Schreiber E; Uechi G; Beck ME; Rardin MJ; Vockley J; Verdin E; Gibson BW; Hirschey MD; Goetzman ES
    J Biol Chem; 2013 Nov; 288(47):33837-33847. PubMed ID: 24121500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT3 is required for liver regeneration but not for the beneficial effect of nicotinamide riboside.
    Mukherjee S; Mo J; Paolella LM; Perry CE; Toth J; Hugo MM; Chu Q; Tong Q; Chellappa K; Baur JA
    JCI Insight; 2021 Apr; 6(7):. PubMed ID: 33690226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.
    Tonin AM; Amaral AU; Busanello EN; Grings M; Castilho RF; Wajner M
    J Bioenerg Biomembr; 2013 Feb; 45(1-2):47-57. PubMed ID: 23065309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation.
    Hirschey MD; Shimazu T; Goetzman E; Jing E; Schwer B; Lombard DB; Grueter CA; Harris C; Biddinger S; Ilkayeva OR; Stevens RD; Li Y; Saha AK; Ruderman NB; Bain JR; Newgard CB; Farese RV; Alt FW; Kahn CR; Verdin E
    Nature; 2010 Mar; 464(7285):121-5. PubMed ID: 20203611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children.
    Bonnet D; Martin D; Pascale De Lonlay ; Villain E; Jouvet P; Rabier D; Brivet M; Saudubray JM
    Circulation; 1999 Nov; 100(22):2248-53. PubMed ID: 10577999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure.
    Karamanlidis G; Lee CF; Garcia-Menendez L; Kolwicz SC; Suthammarak W; Gong G; Sedensky MM; Morgan PG; Wang W; Tian R
    Cell Metab; 2013 Aug; 18(2):239-50. PubMed ID: 23931755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial complex I defect and increased fatty acid oxidation enhance protein lysine acetylation in the diabetic heart.
    Vazquez EJ; Berthiaume JM; Kamath V; Achike O; Buchanan E; Montano MM; Chandler MP; Miyagi M; Rosca MG
    Cardiovasc Res; 2015 Sep; 107(4):453-65. PubMed ID: 26101264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function.
    Basu R; Oudit GY; Wang X; Zhang L; Ussher JR; Lopaschuk GD; Kassiri Z
    Am J Physiol Heart Circ Physiol; 2009 Dec; 297(6):H2096-108. PubMed ID: 19801494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function.
    Lu Z; Chen Y; Aponte AM; Battaglia V; Gucek M; Sack MN
    J Biol Chem; 2015 Jan; 290(4):2466-76. PubMed ID: 25505263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreased Mitochondrial Pyruvate Transport Activity in the Diabetic Heart: ROLE OF MITOCHONDRIAL PYRUVATE CARRIER 2 (MPC2) ACETYLATION.
    Vadvalkar SS; Matsuzaki S; Eyster CA; Giorgione JR; Bockus LB; Kinter CS; Kinter M; Humphries KM
    J Biol Chem; 2017 Mar; 292(11):4423-4433. PubMed ID: 28154187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.