These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33883278)

  • 41. The molecular network of the proteasome machinery inhibition response is orchestrated by HSP70, revealing vulnerabilities in cancer cells.
    Oroń M; Grochowski M; Jaiswar A; Legierska J; Jastrzębski K; Nowak-Niezgoda M; Kołos M; Kaźmierczak W; Olesiński T; Lenarcik M; Cybulska M; Mikula M; Żylicz A; Miączyńska M; Zettl K; Wiśniewski JR; Walerych D
    Cell Rep; 2022 Sep; 40(13):111428. PubMed ID: 36170818
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vitro and ex vivo gene expression profiling reveals differential kinetic response of HSPs and UPR genes is associated with PI resistance in multiple myeloma.
    Mitra AK; Kumar H; Ramakrishnan V; Chen L; Baughn L; Kumar S; Rajkumar SV; Van Ness BG
    Blood Cancer J; 2020 Jul; 10(7):78. PubMed ID: 32724061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Blocking protein quality control to counter hereditary cancers.
    Kampmeyer C; Nielsen SV; Clausen L; Stein A; Gerdes AM; Lindorff-Larsen K; Hartmann-Petersen R
    Genes Chromosomes Cancer; 2017 Dec; 56(12):823-831. PubMed ID: 28779490
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The novel β2-selective proteasome inhibitor LU-102 synergizes with bortezomib and carfilzomib to overcome proteasome inhibitor resistance of myeloma cells.
    Kraus M; Bader J; Geurink PP; Weyburne ES; Mirabella AC; Silzle T; Shabaneh TB; van der Linden WA; de Bruin G; Haile SR; van Rooden E; Appenzeller C; Li N; Kisselev AF; Overkleeft H; Driessen C
    Haematologica; 2015 Oct; 100(10):1350-60. PubMed ID: 26069288
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple myeloma cells depend on the DDI2/NRF1-mediated proteasome stress response for survival.
    Chen T; Ho M; Briere J; Moscvin M; Czarnecki PG; Anderson KC; Blackwell TK; Bianchi G
    Blood Adv; 2022 Jan; 6(2):429-440. PubMed ID: 34649278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel proteasome inhibitor suppresses tumor growth via targeting both 19S proteasome deubiquitinases and 20S proteolytic peptidases.
    Liu N; Liu C; Li X; Liao S; Song W; Yang C; Zhao C; Huang H; Guan L; Zhang P; Liu S; Hua X; Chen X; Zhou P; Lan X; Yi S; Wang S; Wang X; Dou QP; Liu J
    Sci Rep; 2014 Jun; 4():5240. PubMed ID: 24912524
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The proteasome in terminal plasma cell differentiation.
    Cenci S
    Semin Hematol; 2012 Jul; 49(3):215-22. PubMed ID: 22726544
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Therapeutically targeting the SUMOylation, Ubiquitination and Proteasome pathways as a novel anticancer strategy.
    Driscoll JJ; Dechowdhury R
    Target Oncol; 2010 Dec; 5(4):281-9. PubMed ID: 21125340
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new target for proteasome inhibitors: FoxM1.
    Gartel AL
    Expert Opin Investig Drugs; 2010 Feb; 19(2):235-42. PubMed ID: 20074015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Treatment with HIV-Protease Inhibitor Nelfinavir Identifies Membrane Lipid Composition and Fluidity as a Therapeutic Target in Advanced Multiple Myeloma.
    Besse L; Besse A; Stolze SC; Sobh A; Zaal EA; van der Ham AJ; Ruiz M; Phuyal S; Büchler L; Sathianathan M; Florea BI; Borén J; Ståhlman M; Huber J; Bolomsky A; Ludwig H; Hannich JT; Loguinov A; Everts B; Berkers CR; Pilon M; Farhan H; Vulpe CD; Overkleeft HS; Driessen C
    Cancer Res; 2021 Sep; 81(17):4581-4593. PubMed ID: 34158378
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Novel Function of Molecular Chaperone HSP70: SUPPRESSION OF ONCOGENIC FOXM1 AFTER PROTEOTOXIC STRESS.
    Halasi M; Váraljai R; Benevolenskaya E; Gartel AL
    J Biol Chem; 2016 Jan; 291(1):142-8. PubMed ID: 26559972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Generation of endoplasmic reticulum stress and inhibition of autophagy by plitidepsin induces proteotoxic apoptosis in cancer cells.
    Losada A; Berlanga JJ; Molina-Guijarro JM; Jiménez-Ruiz A; Gago F; Avilés P; de Haro C; Martínez-Leal JF
    Biochem Pharmacol; 2020 Feb; 172():113744. PubMed ID: 31812675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Marchantin M: a novel inhibitor of proteasome induces autophagic cell death in prostate cancer cells.
    Jiang H; Sun J; Xu Q; Liu Y; Wei J; Young CY; Yuan H; Lou H
    Cell Death Dis; 2013 Aug; 4(8):e761. PubMed ID: 23928700
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and mechanistic studies of quinolin-chlorobenzothioate derivatives with proteasome inhibitory activity in pancreatic cancer cell lines.
    Hu S; Jin Y; Liu Y; Ljungman M; Neamati N
    Eur J Med Chem; 2018 Oct; 158():884-895. PubMed ID: 30253345
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteasome inhibition increases recruitment of IκB kinase β (IKKβ), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells.
    Singha B; Gatla HR; Manna S; Chang TP; Sanacora S; Poltoratsky V; Vancura A; Vancurova I
    J Biol Chem; 2014 Jan; 289(5):2687-700. PubMed ID: 24337575
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma.
    Gu C; Wang Y; Zhang L; Qiao L; Sun S; Shao M; Tang X; Ding P; Tang C; Cao Y; Zhou Y; Guo M; Wei R; Li N; Xiao Y; Duan J; Yang Y
    J Exp Clin Cancer Res; 2022 Jan; 41(1):11. PubMed ID: 34991674
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial metabolism promotes adaptation to proteotoxic stress.
    Tsvetkov P; Detappe A; Cai K; Keys HR; Brune Z; Ying W; Thiru P; Reidy M; Kugener G; Rossen J; Kocak M; Kory N; Tsherniak A; Santagata S; Whitesell L; Ghobrial IM; Markley JL; Lindquist S; Golub TR
    Nat Chem Biol; 2019 Jul; 15(7):681-689. PubMed ID: 31133756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synergistic targeting of Sp1, a critical transcription factor for myeloma cell growth and survival, by panobinostat and proteasome inhibitors.
    Bat-Erdene A; Miki H; Oda A; Nakamura S; Teramachi J; Amachi R; Tenshin H; Hiasa M; Iwasa M; Harada T; Fujii S; Sogabe K; Kagawa K; Yoshida S; Endo I; Aihara K; Abe M
    Oncotarget; 2016 Nov; 7(48):79064-79075. PubMed ID: 27738323
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Unique anti-myeloma activity by thiazolidine-2,4-dione compounds with Pim inhibiting activity.
    Fujii S; Nakamura S; Oda A; Miki H; Tenshin H; Teramachi J; Hiasa M; Bat-Erdene A; Maeda Y; Oura M; Takahashi M; Iwasa M; Endo I; Yoshida S; Aihara KI; Kurahashi K; Harada T; Kagawa K; Nakao M; Sano S; Abe M
    Br J Haematol; 2018 Jan; 180(2):246-258. PubMed ID: 29327347
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fibroblast Growth Factor 2 lethally sensitizes cancer cells to stress-targeted therapeutic inhibitors.
    Dias MH; Fonseca CS; Zeidler JD; Albuquerque LL; da Silva MS; Cararo-Lopes E; Reis MS; Noël V; Dos Santos EO; Prior IA; Armelin HA
    Mol Oncol; 2019 Feb; 13(2):290-306. PubMed ID: 30422399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.