BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 33883615)

  • 1. Selection of aptamers against triple negative breast cancer cells using high throughput sequencing.
    Ferreira D; Barbosa J; Sousa DA; Silva C; Melo LDR; Avci-Adali M; Wendel HP; Rodrigues LR
    Sci Rep; 2021 Apr; 11(1):8614. PubMed ID: 33883615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Aptamer-Based Probe for Molecular Subtyping of Breast Cancer.
    Liu M; Wang Z; Tan T; Chen Z; Mou X; Yu X; Deng Y; Lu G; He N
    Theranostics; 2018; 8(20):5772-5783. PubMed ID: 30555580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro selection of aptamer S1 against MCF-7 human breast cancer cells.
    Zhang WY; Chen HL; Chen QC
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2393-2397. PubMed ID: 31196711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selection of DNA aptamers for extra cellular domain of human epidermal growth factor receptor 2 to detect HER2 positive carcinomas.
    Sett A; Borthakur BB; Bora U
    Clin Transl Oncol; 2017 Aug; 19(8):976-988. PubMed ID: 28224267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HAPIscreen, a method for high-throughput aptamer identification.
    Dausse E; Taouji S; Evadé L; Di Primo C; Chevet E; Toulmé JJ
    J Nanobiotechnology; 2011 Jun; 9():25. PubMed ID: 21639912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential binding cell-SELEX method to identify cell-specific aptamers using high-throughput sequencing.
    Pleiko K; Saulite L; Parfejevs V; Miculis K; Vjaters E; Riekstina U
    Sci Rep; 2019 May; 9(1):8142. PubMed ID: 31148584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RAPID-SELEX for RNA aptamers.
    Szeto K; Latulippe DR; Ozer A; Pagano JM; White BS; Shalloway D; Lis JT; Craighead HG
    PLoS One; 2013; 8(12):e82667. PubMed ID: 24376564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PD-L1 Aptamer Selected by Loss-Gain Cell-SELEX Conjugated with Paclitaxel for Treating Triple-Negative Breast Cancer.
    Wu X; Li F; Li Y; Yu Y; Liang C; Zhang B; Zhao C; Lu A; Zhang G
    Med Sci Monit; 2020 Jun; 26():e925583. PubMed ID: 32574155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel RNA aptamer identifies plasma membrane ATP synthase beta subunit as an early marker and therapeutic target in aggressive cancer.
    Speransky S; Serafini P; Caroli J; Bicciato S; Lippman ME; Bishopric NH
    Breast Cancer Res Treat; 2019 Jul; 176(2):271-289. PubMed ID: 31006104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Intelligence in Aptamer-Target Binding Prediction.
    Chen Z; Hu L; Zhang BT; Lu A; Wang Y; Yu Y; Zhang G
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic evaluation of cell-SELEX enriched aptamers binding to breast cancer cells.
    Civit L; Taghdisi SM; Jonczyk A; Haßel SK; Gröber C; Blank M; Stunden HJ; Beyer M; Schultze J; Latz E; Mayer G
    Biochimie; 2018 Feb; 145():53-62. PubMed ID: 29054799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating breast cancer molecular subtypes using a DNA aptamer selected against MCF-7 cells.
    Liu M; Yang T; Chen Z; Wang Z; He N
    Biomater Sci; 2018 Nov; 6(12):3152-3159. PubMed ID: 30349922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the emergence of high affinity aptamers for rhVEGF165 during capillary electrophoresis-systematic evolution of ligands by exponential enrichment using high throughput sequencing.
    Jing M; Bowser MT
    Anal Chem; 2013 Nov; 85(22):10761-70. PubMed ID: 24125636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aptamer targeted therapy potentiates immune checkpoint blockade in triple-negative breast cancer.
    Camorani S; Passariello M; Agnello L; Esposito S; Collina F; Cantile M; Di Bonito M; Ulasov IV; Fedele M; Zannetti A; De Lorenzo C; Cerchia L
    J Exp Clin Cancer Res; 2020 Sep; 39(1):180. PubMed ID: 32892748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RaptRanker: in silico RNA aptamer selection from HT-SELEX experiment based on local sequence and structure information.
    Ishida R; Adachi T; Yokota A; Yoshihara H; Aoki K; Nakamura Y; Hamada M
    Nucleic Acids Res; 2020 Aug; 48(14):e82. PubMed ID: 32537639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The application of aptamer 5TR1 in triple negative breast cancer target therapy.
    Luo S; Wang S; Luo N; Chen F; Hu C; Zhang K
    J Cell Biochem; 2018 Jan; 119(1):896-908. PubMed ID: 28671278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Screening of DNA Signaling Aptamer from Multiple Candidates Obtained from SELEX with Next-generation Sequencing.
    Yoshitomi T; Wayama F; Kimura K; Wakui K; Furusho H; Yoshimoto K
    Anal Sci; 2019; 35(1):113-116. PubMed ID: 30626772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implementation of High-Throughput Sequencing (HTS) in Aptamer Selection Technology.
    Komarova N; Barkova D; Kuznetsov A
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33233573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved SELEX technique for selection of DNA aptamers binding to M-type 11 of Streptococcus pyogenes.
    Hamula CL; Peng H; Wang Z; Tyrrell GJ; Li XF; Le XC
    Methods; 2016 Mar; 97():51-7. PubMed ID: 26678795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise discrimination of Luminal A breast cancer subtype using an aptamer in vitro and in vivo.
    Liu M; Zhang B; Li Z; Wang Z; Li S; Liu H; Deng Y; He N
    Nanoscale; 2020 Oct; 12(38):19689-19701. PubMed ID: 32966497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.