These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 33883634)

  • 21. Energy Level Modulation of Small Molecules Enhances Thermoelectric Performances of Carbon Nanotube-Based Organic Hybrid Materials.
    Kim TH; Hong JI
    ACS Appl Mater Interfaces; 2022 Dec; 14(50):55627-55635. PubMed ID: 36510648
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Poly(3,4-ethylenedioxythiophene)/Te/Single-Walled Carbon Nanotube Composites with High Thermoelectric Performance Promoted by Electropolymerization.
    Yin S; Lu W; Wu R; Fan W; Guo CY; Chen G
    ACS Appl Mater Interfaces; 2020 Jan; 12(3):3547-3553. PubMed ID: 31887003
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent Advances in Organic Thermoelectric Materials: Principle Mechanisms and Emerging Carbon-Based Green Energy Materials.
    Zhang Y; Heo YJ; Park M; Park SJ
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Boosting the Power Factor of Benzodithiophene Based Donor-Acceptor Copolymers/SWCNTs Composites through Doping.
    Chen Z; Lai M; Cai L; Zhou W; Xie D; Pan C; Qiu Y
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers.
    Yao CJ; Zhang HL; Zhang Q
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960091
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hybrid Organic-Inorganic Thermoelectric Materials and Devices.
    Jin H; Li J; Iocozzia J; Zeng X; Wei PC; Yang C; Li N; Liu Z; He JH; Zhu T; Wang J; Lin Z; Wang S
    Angew Chem Int Ed Engl; 2019 Oct; 58(43):15206-15226. PubMed ID: 30785665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pseudo
    Qu WQ; Gao CY; Zhang PX; Fan XH; Yang LM
    RSC Adv; 2021 Feb; 11(15):8664-8673. PubMed ID: 35423352
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Molecular Chain Ordering in Single-Walled Carbon Nanotubes/Polyaniline Composite Films for High-Performance Organic Thermoelectric Materials.
    Wang L; Yao Q; Xiao J; Zeng K; Qu S; Shi W; Wang Q; Chen L
    Chem Asian J; 2016 Jun; 11(12):1804-10. PubMed ID: 27123885
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Organic Thermoelectric Materials and Devices for Wearable Green Energy Harvesting.
    Zhang Y; Park SJ
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31137541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-performance thermoelectric materials based on ternary TiO
    Erden F; Li H; Wang X; Wang F; He C
    Phys Chem Chem Phys; 2018 Apr; 20(14):9411-9418. PubMed ID: 29565069
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Applications of Filled Single-Walled Carbon Nanotubes: Progress, Challenges, and Perspectives.
    Kharlamova MV; Kramberger C
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of the Gaseous Environment on the Electrical Conductivity of Multi-Walled Carbon Nanotube Films over a Wide Temperature Range.
    Janas D; Koziol KK
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31973192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermoelectric Properties of Indium and Gallium Dually Doped ZnO Thin Films.
    Tran Nguyen NH; Nguyen TH; Liu YR; Aminzare M; Pham AT; Cho S; Wong DP; Chen KH; Seetawan T; Pham NK; Ta HK; Tran VC; Phan TB
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33916-33923. PubMed ID: 27960402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermoelectric properties of porous multi-walled carbon nanotube/polyaniline core/shell nanocomposites.
    Zhang K; Davis M; Qiu J; Hope-Weeks L; Wang S
    Nanotechnology; 2012 Sep; 23(38):385701. PubMed ID: 22947620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermoelectric Properties of Thin Films from Sorted Single-Walled Carbon Nanotubes.
    Podlesny B; Kumanek B; Borah A; Yamaguchi R; Shiraki T; Fujigaya T; Janas D
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872266
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Thermoelectric Performance of Carbon Nanotubes/Polyaniline Composites by Multiple Interface Engineering.
    Li H; Liu Y; Li P; Liu S; Du F; He C
    ACS Appl Mater Interfaces; 2021 Feb; 13(5):6650-6658. PubMed ID: 33517651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and Performance Enhancement of Cement-Based Thermoelectric Materials.
    Jani R; Holmes N; West R; Gaughan K; Liu X; Qu M; Orisakwe E; Stella L; Kohanoff J; Yin H; Wojciechowski B
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films.
    Nugraha MI; Sun B; Kim H; El-Labban A; Desai S; Chaturvedi N; Hou Y; Garcia de Arquer FP; Alshareef HN; Sargent EH; Baran D
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18999-19007. PubMed ID: 33856780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate).
    Kim D; Kim Y; Choi K; Grunlan JC; Yu C
    ACS Nano; 2010 Jan; 4(1):513-23. PubMed ID: 20041630
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersion of Multi-Walled Carbon Nanotubes in Skutterudites and Its Effect on Thermoelectric and Mechanical Properties.
    Schmitz A; Schmid C; de Boor J; Müller E
    J Nanosci Nanotechnol; 2017 Mar; 17(3):1547-554. PubMed ID: 29693339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.