BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

38 related articles for article (PubMed ID: 33884388)

  • 1. Design and Synthesis of Near-infrared Fluorescent Probes for Imaging of Biological Nitroxyl.
    Tan Y; Liu R; Zhang H; Peltier R; Lam YW; Zhu Q; Hu Y; Sun H
    Sci Rep; 2015 Nov; 5():16979. PubMed ID: 26584764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An activatable fluorescent-photoacoustic dual-modal probe for highly sensitive imaging of nitroxyl
    Qi FY; Qiao L; Peng L; Yang Y; Zhang CH; Liu X
    Analyst; 2024 Apr; 149(8):2299-2305. PubMed ID: 38516833
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A selective phosphine-based fluorescent probe for nitroxyl in living cells.
    Miao Z; Reisz JA; Mitroka SM; Pan J; Xian M; King SB
    Bioorg Med Chem Lett; 2015 Jan; 25(1):16-9. PubMed ID: 25465170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitroxyl donating and visualization with a coumarin-based fluorescence probe.
    Chen J; Cui Y; Wu P; Dassanayake R; Yu P; Fu K; Sun Z; Liu Y; Zhou Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Aug; 316():124317. PubMed ID: 38692102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Affibody-targeted fluorogen activating protein for in vivo tumor imaging.
    Wang Y; Ballou B; Schmidt BF; Andreko S; St Croix CM; Watkins SC; Bruchez MP
    Chem Commun (Camb); 2017 Feb; 53(12):2001-2004. PubMed ID: 28120951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a novel near-infrared fluorescent Nile blue@MOF nanoprobe for imaging mitochondrial ATP in living cells.
    Zhao Y; Cheng X; Lei M; Zong L; Gao M; Du X; Liu X; Qiu D; Xing X
    Analyst; 2024 May; 149(10):2796-2800. PubMed ID: 38669149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific Reactions of RSNO, HSNO, and HNO and Their Applications in the Design of Fluorescent Probes.
    Wang Y; Xu S; Xian M
    Chemistry; 2020 Sep; 26(51):11673-11683. PubMed ID: 32433809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Azobenzene-based colorimetric and fluorometric chemosensor for nitroxyl releasing.
    Zhou Y; Chen J; Cui Y; Tang L; Wu P; Yu P; Fu K; Sun Z; Liu Y
    Nitric Oxide; 2024 Apr; 145():49-56. PubMed ID: 38364967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Near-Infrared Fluorescent Probe for the Rapid Detection of Nitroxyl in Living Cells.
    Zhou H; Jin Y; Wang S; Wang Y; Bu M
    J Fluoresc; 2024 Mar; ():. PubMed ID: 38430415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rhodamine-based fluorescent probe used to determine nitroxyl (HNO) in lysosomes.
    Liu S; Xu J; Ma Q; Li L; Mao G; Wang G; Wu X
    Anal Biochem; 2024 May; 692():115552. PubMed ID: 38718956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel near-infrared fluorescent probe for real-time monitoring of leucine aminopeptidase activity and metastatic tumor progression.
    Jin C; Yang L; Fang N; Li B; Zhu HL; Li Z
    Talanta; 2024 Aug; 275():126151. PubMed ID: 38678927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reusable HNO Sensors Derived from Cu Cyclam: A DFT Study on the Mechanistic Origin of High Reactivity and Favorable Conformation Changes and Potential Improvements.
    Chu JM; Baizhigitova D; Nguyen V; Zhang Y
    Inorg Chem; 2024 Feb; 63(7):3586-3598. PubMed ID: 38307037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Origin of Favorable Substituent Effects in Excellent Cu Cyclam Based HNO Sensors.
    Shi Y; Stella G; Chu JM; Zhang Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(45):e202211450. PubMed ID: 36048138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new-type HOCl-activatable fluorescent probe and its applications in water environment and biosystems.
    Wang K; Liu Y; Liu C; Zhu H; Li X; Yu M; Liu L; Sang G; Sheng W; Zhu B
    Sci Total Environ; 2022 Sep; 839():156164. PubMed ID: 35609703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ratiometric Determination of Nitroxyl Utilizing a Novel Fluorescence Resonance Energy Transfer-Based Fluorescent Probe Based on a Coumarin-Rhodol Derivative.
    Xu J; Bai Y; Ma Q; Sun J; Tian M; Li L; Zhu N; Liu S
    ACS Omega; 2022 Feb; 7(6):5264-5273. PubMed ID: 35187341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Azanone (HNO): generation, stabilization and detection.
    Gallego CM; Mazzeo A; Vargas P; Suárez S; Pellegrino J; Doctorovich F
    Chem Sci; 2021 Aug; 12(31):10410-10425. PubMed ID: 34447533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tumor-targeted near-infrared fluorescent probe for HNO and its application to the real-time monitoring of HNO release
    Chai Z; Liu D; Li X; Zhao Y; Shi W; Li X; Ma H
    Chem Commun (Camb); 2021 May; 57(41):5063-5066. PubMed ID: 33884388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Chemiluminescent Probe for HNO Quantification and Real-Time Monitoring in Living Cells.
    An W; Ryan LS; Reeves AG; Bruemmer KJ; Mouhaffel L; Gerberich JL; Winters A; Mason RP; Lippert AR
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1361-1365. PubMed ID: 30476360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An isophorone-fused near-infrared fluorescent probe with a large Stokes shift for imaging endogenous nitroxyl in living cells and zebrafish.
    Wei C; Wang X; Li X; Jia X; Hao X; Zhang J; Zhang P; Li X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117765. PubMed ID: 31707025
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.