These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33884498)

  • 1. Modeling of atmospheric particulate matters via artificial intelligence methods.
    Cihan P; Ozel H; Ozcan HK
    Environ Monit Assess; 2021 Apr; 193(5):287. PubMed ID: 33884498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel multi-model data-driven ensemble approach for the prediction of particulate matter concentration.
    Umar IK; Nourani V; Gökçekuş H
    Environ Sci Pollut Res Int; 2021 Sep; 28(36):49663-49677. PubMed ID: 33939094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial prediction of PM
    Bozdağ A; Dokuz Y; Gökçek ÖB
    Environ Pollut; 2020 Aug; 263(Pt A):114635. PubMed ID: 33618491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of secondary inorganic aerosol and road traffic at a suburban air quality monitoring station.
    Megido L; Negral L; Castrillón L; Fernández-Nava Y; Suárez-Peña B; Marañón E
    J Environ Manage; 2017 Mar; 189():36-45. PubMed ID: 28006732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms.
    Sharma E; Deo RC; Prasad R; Parisi AV
    Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of climate and meteorological changes on particulate matter in Pune, India.
    Yadav S; Praveen OD; Satsangi PG
    Environ Monit Assess; 2015 Jul; 187(7):402. PubMed ID: 26041065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Particulate matter adsorption capacity of 10 evergreen species in Beijing].
    Wang B; Zhang Wei-kang ; Niu X; Wang XY
    Huan Jing Ke Xue; 2015 Feb; 36(2):408-14. PubMed ID: 26031064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid model for forecasting of particulate matter concentrations based on multiscale characterization and machine learning techniques.
    Ali Shah SA; Aziz W; Almaraashi M; Ahmed Nadeem MS; Habib N; Shim SO
    Math Biosci Eng; 2021 Mar; 18(3):1992-2009. PubMed ID: 33892534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-model hybrid Korean air quality forecasting system.
    Chang LS; Cho A; Park H; Nam K; Kim D; Hong JH; Song CK
    J Air Waste Manag Assoc; 2016 Sep; 66(9):896-911. PubMed ID: 27450767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Inhalable particulate matter and fine particulate matter: their basic characteristics, monitoring methods, and forest regulation functions].
    Wang H; Lu SW; Li SN; Pan QH; Zhang YP
    Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):869-77. PubMed ID: 23755507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of artificial neural networks for modeling daily concentrations of particulate matter from meteorological data.
    de Lima BD; de Cássia Marques Alves R; de Oliveira GG; Paim BL
    Environ Monit Assess; 2023 Oct; 195(11):1305. PubMed ID: 37828253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A performance comparison study on PM
    Chinatamby P; Jewaratnam J
    Chemosphere; 2023 Mar; 317():137788. PubMed ID: 36642141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Influence of South East Asia Forest Fires on Ambient Particulate Matter Concentrations in Singapore: An Ecological Study Using Random Forest and Vector Autoregressive Models.
    Rajarethinam J; Aik J; Tian J
    Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33327455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and Temporal Variation of Atmospheric Particulate Matter in Bangalore: A Technology-Intensive Region in India.
    Devaraj S; Tiwari S; Ramaraju HK; Dumka UC; Sateesh M; Parmita P; Shivashankara GP
    Arch Environ Contam Toxicol; 2019 Aug; 77(2):214-222. PubMed ID: 31168647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the origin of the air mass on the background levels of atmospheric particulate matter and secondary inorganic compounds in the Madrid air basin.
    López V; Salvador P; Artíñano B; Gomez-Moreno FJ; Fernández J; Molero F
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30426-30443. PubMed ID: 31440972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trends in atmospheric particles and their light extinction performance between 1980 and 2015 in Beijing, China.
    Guo LL; Zheng H; Lyu YL; Liu LY; Kong F; Wang SR
    Chemosphere; 2018 Aug; 205():52-61. PubMed ID: 29680305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microorganisms associated particulate matter: a preliminary study.
    Alghamdi MA; Shamy M; Redal MA; Khoder M; Awad AH; Elserougy S
    Sci Total Environ; 2014 May; 479-480():109-16. PubMed ID: 24561289
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.