These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 33884512)
1. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Brémaud L; Cai X; Brenner R; Grimal Q Biomech Model Mechanobiol; 2021 Aug; 20(4):1509-1518. PubMed ID: 33884512 [TBL] [Abstract][Full Text] [Related]
2. A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Grimal Q; Raum K; Gerisch A; Laugier P Biomech Model Mechanobiol; 2011 Dec; 10(6):925-37. PubMed ID: 21267625 [TBL] [Abstract][Full Text] [Related]
3. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging. Sansalone V; Gagliardi D; Desceliers C; Bousson V; Laredo JD; Peyrin F; Haïat G; Naili S Biomech Model Mechanobiol; 2016 Feb; 15(1):111-31. PubMed ID: 26202170 [TBL] [Abstract][Full Text] [Related]
4. Intracortical stiffness of mid-diaphysis femur bovine bone: lacunar-canalicular based homogenization numerical solutions and microhardness measurements. Hage IS; Hamade RF J Mater Sci Mater Med; 2017 Sep; 28(9):135. PubMed ID: 28762142 [TBL] [Abstract][Full Text] [Related]
5. Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. Sevostianov I; Kachanov M J Biomech; 2000 Jul; 33(7):881-8. PubMed ID: 10831763 [TBL] [Abstract][Full Text] [Related]
6. Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. Cai X; Brenner R; Peralta L; Olivier C; Gouttenoire PJ; Chappard C; Peyrin F; Cassereau D; Laugier P; Grimal Q J R Soc Interface; 2019 Feb; 16(151):20180911. PubMed ID: 30958180 [TBL] [Abstract][Full Text] [Related]
7. Prevalent role of porosity and osteonal area over mineralization heterogeneity in the fracture toughness of human cortical bone. Granke M; Makowski AJ; Uppuganti S; Nyman JS J Biomech; 2016 Sep; 49(13):2748-2755. PubMed ID: 27344202 [TBL] [Abstract][Full Text] [Related]
8. To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Granke M; Grimal Q; Parnell WJ; Raum K; Gerisch A; Peyrin F; Saïed A; Laugier P Acta Biomater; 2015 Jan; 12():207-215. PubMed ID: 25462527 [TBL] [Abstract][Full Text] [Related]
9. Pore network microarchitecture influences human cortical bone elasticity during growth and aging. Bala Y; Lefèvre E; Roux JP; Baron C; Lasaygues P; Pithioux M; Kaftandjian V; Follet H J Mech Behav Biomed Mater; 2016 Oct; 63():164-173. PubMed ID: 27389322 [TBL] [Abstract][Full Text] [Related]
10. Dynamic permeability of the lacunar-canalicular system in human cortical bone. Benalla M; Palacio-Mancheno PE; Fritton SP; Cardoso L; Cowin SC Biomech Model Mechanobiol; 2014 Aug; 13(4):801-12. PubMed ID: 24146291 [TBL] [Abstract][Full Text] [Related]
11. Poroelastic behaviour of cortical bone under harmonic axial loading: a finite element study at the osteonal scale. Nguyen VH; Lemaire T; Naili S Med Eng Phys; 2010 May; 32(4):384-90. PubMed ID: 20226715 [TBL] [Abstract][Full Text] [Related]
12. The multiscale meso-mechanics model of viscoelastic cortical bone. Chen Y; Wu R; Yang B; Wang G Biomech Model Mechanobiol; 2022 Dec; 21(6):1713-1729. PubMed ID: 36057052 [TBL] [Abstract][Full Text] [Related]
13. Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Cai X; Follet H; Peralta L; Gardegaront M; Farlay D; Gauthier R; Yu B; Gineyts E; Olivier C; Langer M; Gourrier A; Mitton D; Peyrin F; Grimal Q; Laugier P Acta Biomater; 2019 May; 90():254-266. PubMed ID: 30922952 [TBL] [Abstract][Full Text] [Related]
14. Understanding age-induced cortical porosity in women: Is a negative BMU balance in quiescent osteons a major contributor? Andreasen CM; Delaisse JM; van der Eerden BCJ; van Leeuwen JPTM; Ding M; Andersen TL Bone; 2018 Dec; 117():70-82. PubMed ID: 30240959 [TBL] [Abstract][Full Text] [Related]
15. Effect of porosity and mineral content on the elastic constants of cortical bone: a multiscale approach. Martínez-Reina J; Domínguez J; García-Aznar JM Biomech Model Mechanobiol; 2011 Jun; 10(3):309-22. PubMed ID: 20596743 [TBL] [Abstract][Full Text] [Related]
16. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue. Salguero L; Saadat F; Sevostianov I J Biomech; 2014 Oct; 47(13):3279-87. PubMed ID: 25234350 [TBL] [Abstract][Full Text] [Related]
17. Effect of porosity, tissue density, and mechanical properties on radial sound speed in human cortical bone. Eneh CT; Malo MK; Karjalainen JP; Liukkonen J; Töyräs J; Jurvelin JS Med Phys; 2016 May; 43(5):2030. PubMed ID: 27147315 [TBL] [Abstract][Full Text] [Related]
18. Micromechanics modeling of Haversian cortical bone properties. Hogan HA J Biomech; 1992 May; 25(5):549-56. PubMed ID: 1592860 [TBL] [Abstract][Full Text] [Related]
19. The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. Parnell WJ; Grimal Q J R Soc Interface; 2009 Jan; 6(30):97-109. PubMed ID: 18628200 [TBL] [Abstract][Full Text] [Related]
20. Spatial variation in osteonal bone properties relative to tissue and animal age. Gourion-Arsiquaud S; Burket JC; Havill LM; DiCarlo E; Doty SB; Mendelsohn R; van der Meulen MC; Boskey AL J Bone Miner Res; 2009 Jul; 24(7):1271-81. PubMed ID: 19210217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]