These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 33884681)
1. Low-Temperature H Sonobe K; Tanabe M; Imaoka T; Chun WJ; Yamamoto K Chemistry; 2021 Jun; 27(33):8452-8456. PubMed ID: 33884681 [TBL] [Abstract][Full Text] [Related]
2. Enhanced Catalytic Performance of Subnano Copper Oxide Particles. Sonobe K; Tanabe M; Yamamoto K ACS Nano; 2020 Feb; 14(2):1804-1810. PubMed ID: 32027118 [TBL] [Abstract][Full Text] [Related]
3. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction. Senanayake SD; Stacchiola D; Rodriguez JA Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528 [TBL] [Abstract][Full Text] [Related]
4. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide. Kim SC J Hazard Mater; 2002 Apr; 91(1-3):285-99. PubMed ID: 11900919 [TBL] [Abstract][Full Text] [Related]
5. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems. Stacchiola DJ Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058 [TBL] [Abstract][Full Text] [Related]
6. Redox properties of doped and supported copper-ceria catalysts. Beckers J; Rothenberg G Dalton Trans; 2008 Dec; (46):6573-8. PubMed ID: 19030619 [TBL] [Abstract][Full Text] [Related]
7. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Chen C; Ikemoto S; Yokota GI; Higuchi K; Muratsugu S; Tada M Phys Chem Chem Phys; 2024 Jul; 26(26):17979-17990. PubMed ID: 38814159 [TBL] [Abstract][Full Text] [Related]
8. Sintering- and oxidation-resistant ultrasmall Cu(I)/(II) oxides supported on defect-rich mesoporous alumina microspheres boosting catalytic ozonation. Chen H; Fang C; Gao X; Jiang G; Wang X; Sun SP; Duo Wu W; Wu Z J Colloid Interface Sci; 2021 Jan; 581(Pt B):964-978. PubMed ID: 32956914 [TBL] [Abstract][Full Text] [Related]
9. Being two is better than one-catalytic reductions with dendrimer encapsulated copper- and copper-cobalt-subnanoparticles. Ficker M; Petersen JF; Gschneidtner T; Rasmussen AL; Purdy T; Hansen JS; Hansen TH; Husted S; Moth Poulsen K; Olsson E; Christensen JB Chem Commun (Camb); 2015 Jun; 51(49):9957-60. PubMed ID: 25997569 [TBL] [Abstract][Full Text] [Related]
10. Reversible low-temperature redox activity and selective oxidation catalysis derived from the concerted activation of multiple metal species on Cr and Rh-incorporated ceria catalysts. Ikemoto S; Huang X; Muratsugu S; Nagase S; Koitaya T; Matsui H; Yokota GI; Sudoh T; Hashimoto A; Tan Y; Yamamoto S; Tang J; Matsuda I; Yoshinobu J; Yokoyama T; Kusaka S; Matsuda R; Tada M Phys Chem Chem Phys; 2019 Oct; 21(37):20868-20877. PubMed ID: 31517357 [TBL] [Abstract][Full Text] [Related]
11. Heterostructured Copper-Ceria and Iron-Ceria Nanorods: Role of Morphology, Redox, and Acid Properties in Catalytic Diesel Soot Combustion. Sudarsanam P; Hillary B; Amin MH; Rockstroh N; Bentrup U; Brückner A; Bhargava SK Langmuir; 2018 Feb; 34(8):2663-2673. PubMed ID: 29397744 [TBL] [Abstract][Full Text] [Related]
12. Methanol Synthesis and Decomposition Reactions Catalyzed by a Model Catalyst Developed from Bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II)/Silica. Ranaweera SA; Henry WP; White MG ACS Omega; 2017 Sep; 2(9):5949-5961. PubMed ID: 31457849 [TBL] [Abstract][Full Text] [Related]
13. Synergistic Effects of Multicomponents Produce Outstanding Soot Oxidation Activity in a Cs/Co/MnO Wang M; Zhang Y; Yu Y; Shan W; He H Environ Sci Technol; 2021 Jan; 55(1):240-248. PubMed ID: 33337142 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Effects of Gold-Palladium Nanoalloys and Reducible Supports on the Catalytic Reduction of 4-Nitrophenol. Bingwa N; Patala R; Noh JH; Ndolomingo MJ; Tetyana S; Bewana S; Meijboom R Langmuir; 2017 Jul; 33(28):7086-7095. PubMed ID: 28648075 [TBL] [Abstract][Full Text] [Related]
15. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance. Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417 [TBL] [Abstract][Full Text] [Related]
16. Catalytic Performance of Spherical MCM-41 Modified with Copper and Iron as Catalysts of NH Jankowska A; Chłopek A; Kowalczyk A; Rutkowska M; Michalik M; Liu S; Chmielarz L Molecules; 2020 Nov; 25(23):. PubMed ID: 33266178 [TBL] [Abstract][Full Text] [Related]
17. Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5 (M: Fe, Cu, Ru, Ag) catalysts at room temperature. Kim J; Lee JE; Lee HW; Jeon JK; Song J; Jung SC; Tsang YF; Park YK J Hazard Mater; 2020 Oct; 397():122577. PubMed ID: 32417604 [TBL] [Abstract][Full Text] [Related]
18. Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure-activity relationship. Guo Y; Gu D; Jin Z; Du PP; Si R; Tao J; Xu WQ; Huang YY; Senanayake S; Song QS; Jia CJ; Schüth F Nanoscale; 2015 Mar; 7(11):4920-8. PubMed ID: 25631762 [TBL] [Abstract][Full Text] [Related]
19. Effect of titania structure on the properties of its supported copper oxide catalysts. Zhu H; Dong L; Chen Y J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779 [TBL] [Abstract][Full Text] [Related]
20. Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. An K; Alayoglu S; Musselwhite N; Plamthottam S; Melaet G; Lindeman AE; Somorjai GA J Am Chem Soc; 2013 Nov; 135(44):16689-96. PubMed ID: 24090187 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]