These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33884770)

  • 1. Extended finite element method for fluid-structure interaction in wave membrane blood pump.
    Martinolli M; Biasetti J; Zonca S; Polverelli L; Vergara C
    Int J Numer Method Biomed Eng; 2021 Jul; 37(7):e3467. PubMed ID: 33884770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Fluid-Structure Interaction Study of a New Wave Membrane Blood Pump.
    Martinolli M; Cornat F; Vergara C
    Cardiovasc Eng Technol; 2022 Jun; 13(3):373-392. PubMed ID: 34773241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.
    Li P; Zhang J
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2667-2681. PubMed ID: 32621160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials.
    Liu C; Shen Z; Gan L; Jin T; Zhang H; Liu D
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30304867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical simulation of wave propagation through interfaces using the extended finite element method for magnetic resonance elastography.
    Du Q; Bel-Brunon A; Lambert SA; Hamila N
    J Acoust Soc Am; 2022 May; 151(5):3481. PubMed ID: 35649898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The progressive wave pump: numerical multiphysics investigation of a novel pump concept with potential to ventricular assist device application.
    Perschall M; Drevet JB; Schenkel T; Oertel H
    Artif Organs; 2012 Sep; 36(9):E179-90. PubMed ID: 22835085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro validation of finite-element model of AAA hemodynamics incorporating realistic outlet boundary conditions.
    Kung EO; Les AS; Medina F; Wicker RB; McConnell MV; Taylor CA
    J Biomech Eng; 2011 Apr; 133(4):041003. PubMed ID: 21428677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction analysis of a collapsible axial flow blood pump impeller and protective cage for Fontan patients.
    Hirschhorn M; Bisirri E; Stevens R; Throckmorton AL
    Artif Organs; 2020 Aug; 44(8):E337-E347. PubMed ID: 32216111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Perfectly Matched Layer absorbing boundary for fluid-structure interactions using the Immersed Finite Element Method.
    Yang J; Yu F; Krane M; Zhang LT
    J Fluids Struct; 2018 Jan; 76():135-152. PubMed ID: 29151673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulent finite element model applied for blood flow calculation in arterial bifurcation.
    Nikolić A; Topalović M; Simić V; Filipović N
    Comput Methods Programs Biomed; 2021 Sep; 209():106328. PubMed ID: 34407452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical analysis of the three-dimensional blood flow in the korean artificial heart.
    Shim EB; Yeo JY; Ko HJ; Youn CH; Lee YR; Park CY; Min BG; Sun K
    Artif Organs; 2003 Jan; 27(1):49-60. PubMed ID: 12534713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wave finite element analysis of the passive cochlea.
    Elliott SJ; Ni G; Mace BR; Lineton B
    J Acoust Soc Am; 2013 Mar; 133(3):1535-45. PubMed ID: 23464024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations.
    Wang X; Zhang LT
    Comput Methods Appl Mech Eng; 2013 Dec; 267():. PubMed ID: 24223445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels.
    Passerini T; Quaini A; Villa U; Veneziani A; Canic S
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1192-213. PubMed ID: 23798339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupled fluid-structure interaction hemodynamics in a zero-pressure state corrected arterial geometry.
    Vavourakis V; Papaharilaou Y; Ekaterinaris JA
    J Biomech; 2011 Sep; 44(13):2453-60. PubMed ID: 21762918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of flow field and hemolysis index in axial flow blood pump by computational fluid dynamics-discrete element method.
    Cheng L; Tan J; Yun Z; Wang S; Yu Z
    Int J Artif Organs; 2021 Jan; 44(1):46-54. PubMed ID: 32393086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical analysis of aortic hemodynamics under the support of venoarterial extracorporeal membrane oxygenation and intra-aortic balloon pump.
    Gu K; Guan Z; Lin X; Feng Y; Feng J; Yang Y; Zhang Z; Chang Y; Ling Y; Wan F
    Comput Methods Programs Biomed; 2019 Dec; 182():105041. PubMed ID: 31465978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards accurate numerical method for monodomain models using a realistic heart geometry.
    Belhamadia Y; Fortin A; Bourgault Y
    Math Biosci; 2009 Aug; 220(2):89-101. PubMed ID: 19447119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.
    Nisar A; Afzulpurkar N; Tuantranont A; Mahaisavariya B
    Cardiovasc Eng; 2008 Dec; 8(4):203-18. PubMed ID: 19030990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.