BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33885072)

  • 1. Enhancing the analysis of disorder in X-ray absorption spectra: application of deep neural networks to T-jump-X-ray probe experiments.
    Madkhali MMM; Rankine CD; Penfold TJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):9259-9269. PubMed ID: 33885072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Structural Representation in the Performance of a Deep Neural Network for X-Ray Spectroscopy.
    Madkhali MMM; Rankine CD; Penfold TJ
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward time-resolved laser T-jump/X-ray probe spectroscopy in aqueous solutions.
    Cannelli O; Bacellar C; Ingle RA; Bohinc R; Kinschel D; Bauer B; Ferreira DS; Grolimund D; Mancini GF; Chergui M
    Struct Dyn; 2019 Nov; 6(6):064303. PubMed ID: 31832487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond structural insight: a deep neural network for the prediction of Pt L
    Watson L; Rankine CD; Penfold TJ
    Phys Chem Chem Phys; 2022 Apr; 24(16):9156-9167. PubMed ID: 35393987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra.
    Rankine CD; Madkhali MMM; Penfold TJ
    J Phys Chem A; 2020 May; 124(21):4263-4270. PubMed ID: 32369378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study.
    Arcovito A; Lamb DC; Nienhaus GU; Hazemann JL; Benfatto M; Della Longa S
    Biophys J; 2005 Apr; 88(4):2954-64. PubMed ID: 15681649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy.
    Marcella N; Liu Y; Timoshenko J; Guan E; Luneau M; Shirman T; Plonka AM; van der Hoeven JES; Aizenberg J; Friend CM; Frenkel AI
    Phys Chem Chem Phys; 2020 Sep; 22(34):18902-18910. PubMed ID: 32393945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local structure and dynamics of hemeproteins by X-ray absorption near edge structure spectroscopy.
    Arcovito A; della Longa S
    J Inorg Biochem; 2012 Jul; 112():93-9. PubMed ID: 22541673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the capabilities of X-ray absorption spectroscopy for determining the structure of electrolyte solutions: computed spectra for Cr(3+) or Rh(3+) in water based on molecular dynamics.
    Merkling PJ; Muñoz-Páez A; Sánchez Marcos E
    J Am Chem Soc; 2002 Sep; 124(36):10911-20. PubMed ID: 12207547
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural investigation of lanthanoid coordination: a combined XANES and molecular dynamics study.
    D'Angelo P; Zitolo A; Migliorati V; Mancini G; Persson I; Chillemi G
    Inorg Chem; 2009 Nov; 48(21):10239-48. PubMed ID: 19788258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unraveling the spectral signatures of solvent ordering in K-edge XANES of aqueous Na
    Galib M; Schenter GK; Mundy CJ; Govind N; Fulton JL
    J Chem Phys; 2018 Sep; 149(12):124503. PubMed ID: 30278664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of XANES spectra of disordered systems based on molecular dynamics.
    Roscioni OM; D'Angelo P; Chillemi G; Della Longa S; Benfatto M
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):75-9. PubMed ID: 15616368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond and femtosecond X-ray absorption spectroscopy of molecular systems.
    Chergui M
    Acta Crystallogr A; 2010 Mar; 66(Pt 2):229-39. PubMed ID: 20164646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structural dynamics probed by ultrafast X-ray absorption spectroscopy.
    Bressler C; Chergui M
    Annu Rev Phys Chem; 2010; 61():263-82. PubMed ID: 20055677
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local structure of reaction intermediates probed by time-resolved x-ray absorption near edge structure spectroscopy.
    Smolentsev G; Guilera G; Tromp M; Pascarelli S; Soldatov AV
    J Chem Phys; 2009 May; 130(17):174508. PubMed ID: 19425791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature-Jump 2D IR Spectroscopy with Intensity-Modulated CW Optical Heating.
    Ashwood B; Lewis NHC; Sanstead PJ; Tokmakoff A
    J Phys Chem B; 2020 Oct; 124(39):8665-8677. PubMed ID: 32902979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local environment of metal ions in phthalocyanines: K-edge X-ray absorption spectra.
    Rossi G; d'Acapito F; Amidani L; Boscherini F; Pedio M
    Phys Chem Chem Phys; 2016 Sep; 18(34):23686-94. PubMed ID: 27510989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chemical sensitivity of X-ray spectroscopy: high energy resolution XANES versus X-ray emission spectroscopy of substituted ferrocenes.
    Atkins AJ; Bauer M; Jacob CR
    Phys Chem Chem Phys; 2013 Jun; 15(21):8095-105. PubMed ID: 23579736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network.
    Rankine CD; Penfold TJ
    J Chem Phys; 2022 Apr; 156(16):164102. PubMed ID: 35490005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the hydrated Ca(2+) and Cl(-): Combined X-ray absorption measurements and QM/MM MD simulations study.
    Tongraar A; T-Thienprasert J; Rujirawat S; Limpijumnong S
    Phys Chem Chem Phys; 2010 Sep; 12(36):10876-87. PubMed ID: 20672165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.