These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33885321)

  • 1. Molecular Dynamics Simulations for the Determination of the Characteristic Structural Differences between Inactive and Active States of Wild Type and Mutants of the Orexin2 Receptor.
    Yokoi S; Mitsutake A
    J Phys Chem B; 2021 May; 125(17):4286-4298. PubMed ID: 33885321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations.
    Yokoi S; Mitsutake A
    Biophys Rev; 2022 Feb; 14(1):221-231. PubMed ID: 35340605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling.
    Yokoi S; Suno R; Mitsutake A
    J Phys Chem B; 2024 Jun; 128(25):6082-6096. PubMed ID: 38722794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism.
    Dalton JA; Lans I; Giraldo J
    BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of corticotropin-releasing factor 1 receptor: insights from molecular dynamics simulations.
    Singh R; Ahalawat N; Murarka RK
    J Phys Chem B; 2015 Feb; 119(7):2806-17. PubMed ID: 25607803
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic behavior of the active and inactive states of the adenosine A(2A) receptor.
    Lee S; Bhattacharya S; Grisshammer R; Tate C; Vaidehi N
    J Phys Chem B; 2014 Mar; 118(12):3355-65. PubMed ID: 24579769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural perspective of class B1 GPCR signaling.
    Cong Z; Liang YL; Zhou Q; Darbalaei S; Zhao F; Feng W; Zhao L; Xu HE; Yang D; Wang MW
    Trends Pharmacol Sci; 2022 Apr; 43(4):321-334. PubMed ID: 35078643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying multiple active conformations in the G protein-coupled receptor activation landscape using computational methods.
    Dong SS; Goddard WA; Abrol R
    Methods Cell Biol; 2017; 142():173-186. PubMed ID: 28964335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Difference and Influence of Inactive and Active States of Cannabinoid Receptor Subtype CB2: From Conformation to Drug Discovery.
    Hu J; Feng Z; Ma S; Zhang Y; Tong Q; Alqarni MH; Gou X; Xie XQ
    J Chem Inf Model; 2016 Jun; 56(6):1152-63. PubMed ID: 27186994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Do Molecular Dynamics Data Complement Static Structural Data of GPCRs.
    Torrens-Fontanals M; Stepniewski TM; Aranda-García D; Morales-Pastor A; Medel-Lacruz B; Selent J
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.
    Tsukamoto H; Farrens DL
    J Biol Chem; 2013 Sep; 288(39):28207-16. PubMed ID: 23940032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rearrangement of a polar core provides a conserved mechanism for constitutive activation of class B G protein-coupled receptors.
    Yin Y; de Waal PW; He Y; Zhao LH; Yang D; Cai X; Jiang Y; Melcher K; Wang MW; Xu HE
    J Biol Chem; 2017 Jun; 292(24):9865-9881. PubMed ID: 28356352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the determination of G protein-coupled receptor structures.
    Thal DM; Vuckovic Z; Draper-Joyce CJ; Liang YL; Glukhova A; Christopoulos A; Sexton PM
    Curr Opin Struct Biol; 2018 Aug; 51():28-34. PubMed ID: 29547818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graded activation and free energy landscapes of a muscarinic G-protein-coupled receptor.
    Miao Y; McCammon JA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12162-12167. PubMed ID: 27791003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of biased agonists in the β(2) adrenergic receptor with accelerated molecular dynamics.
    Tikhonova IG; Selvam B; Ivetac A; Wereszczynski J; McCammon JA
    Biochemistry; 2013 Aug; 52(33):5593-603. PubMed ID: 23879802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing the Mechanism of Agonist-Mediated Cannabinoid Receptor 1 (CB1) Activation and Phospholipid-Mediated Allosteric Modulation.
    Díaz Ó; Dalton JAR; Giraldo J
    J Med Chem; 2019 Jun; 62(11):5638-5654. PubMed ID: 31095906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Activation of the Heterodimeric GABA
    Kim Y; Jeong E; Jeong JH; Kim Y; Cho Y
    J Mol Biol; 2020 Nov; 432(22):5966-5984. PubMed ID: 33058878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of an external static EF on the conformational transition of 5-HT1A receptor: A molecular dynamics simulation study.
    Guan L; Tan J; Qi B; Chen Y; Cao M; Zhang Q; Zou Y
    Biophys Chem; 2024 Sep; 312():107283. PubMed ID: 38941873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.