BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33885324)

  • 1. Enhanced Third Harmonic Generation in Lead Bromide Perovskites with Ruddlesden-Popper Planar Faults.
    Bhattacharya P; Morrell MV; Xing Y; Mathai CJ; Yu P; Guha S
    J Phys Chem Lett; 2021 Apr; 12(16):4092-4097. PubMed ID: 33885324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite Nanocrystals for Enhanced Optoelectronic Performance.
    Morrell MV; Pickett A; Bhattacharya P; Guha S; Xing Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38579-38585. PubMed ID: 34358425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic Structure and Electrical Activity of Grain Boundaries and Ruddlesden-Popper Faults in Cesium Lead Bromide Perovskite.
    Thind AS; Luo G; Hachtel JA; Morrell MV; Cho SB; Borisevich AY; Idrobo JC; Xing Y; Mishra R
    Adv Mater; 2019 Jan; 31(4):e1805047. PubMed ID: 30506822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Enhanced Third-Harmonic Generation in 2D Perovskites at Excitonic Resonances.
    Abdelwahab I; Grinblat G; Leng K; Li Y; Chi X; Rusydi A; Maier SA; Loh KP
    ACS Nano; 2018 Jan; 12(1):644-650. PubMed ID: 29261278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals.
    Akkerman QA; Bladt E; Petralanda U; Dang Z; Sartori E; Baranov D; Abdelhady AL; Infante I; Bals S; Manna L
    Chem Mater; 2019 Mar; 31(6):2182-2190. PubMed ID: 32952295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling Second Harmonic Generation from Multiphoton Photoluminescence in Halide Perovskites using Multidimensional Harmonic Generation.
    Morrow DJ; Hautzinger MP; Lafayette DP; Scheeler JM; Dang L; Leng M; Kohler DD; Wheaton AM; Fu Y; Guzei IA; Tang J; Jin S; Wright JC
    J Phys Chem Lett; 2020 Aug; 11(16):6551-6559. PubMed ID: 32700916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
    Yu Y; Zhang D; Yang P
    Nano Lett; 2017 Sep; 17(9):5489-5494. PubMed ID: 28796526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Crystal Growth of Perovskite Nanocrystals via Postsynthetic Lead(II) Bromide Treatment to Increase the Colloidal Stability and Efficiency of Light-Emitting Devices.
    Chiba T; Takahashi Y; Sato J; Ishikawa S; Ebe H; Tamura K; Ohisa S; Kido J
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45574-45581. PubMed ID: 32914951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead-Free Cesium Titanium Bromide Double Perovskite Nanocrystals.
    Grandhi GK; Matuhina A; Liu M; Annurakshita S; Ali-Löytty H; Bautista G; Vivo P
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34072822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable Ferroelectricity in Ruddlesden-Popper Halide Perovskites.
    Zhang Q; Solanki A; Parida K; Giovanni D; Li M; Jansen TLC; Pshenichnikov MS; Sum TC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13523-13532. PubMed ID: 30854841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the tunable electronic band structure of Cs
    Liao CS; Yu ZL; He PB; Liu B; Zeng R; Wan Q; Cai MQ
    J Colloid Interface Sci; 2021 Sep; 597():233-241. PubMed ID: 33872880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow metal halide perovskite nanocrystals with efficient blue emissions.
    Worku M; Tian Y; Zhou C; Lin H; Chaaban M; Xu LJ; He Q; Beery D; Zhou Y; Lin X; Su YF; Xin Y; Ma B
    Sci Adv; 2020 Apr; 6(17):eaaz5961. PubMed ID: 32426465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxalic Acid Enabled Emission Enhancement and Continuous Extraction of Chloride from Cesium Lead Chloride/Bromide Perovskite Nanocrystals.
    Wang S; Shen X; Zhang Y; Zhuang X; Xue D; Zhang X; Wu J; Zhu J; Shi Z; Kershaw SV; Yu WW; Rogach AL
    Small; 2019 Aug; 15(34):e1901828. PubMed ID: 31276320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Giant Third-Order Nonlinear Response of Mixed Perovskite Nanocrystals.
    Abu Baker AM; Boltaev GS; Iqbal M; Pylnev M; Hamdan NM; Alnaser AS
    Materials (Basel); 2022 Jan; 15(1):. PubMed ID: 35009532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion migration mechanism in all-inorganic Ruddlesden-Popper lead halide perovskites by first-principles calculations.
    Zhao S; Xiao L
    Phys Chem Chem Phys; 2021 Dec; 24(1):403-410. PubMed ID: 34897315
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unravelling Structure and Formation Mechanisms of Ruddlesden-Popper-Phase-like Nanodomains in Inorganic Lead Halide Perovskites.
    Song K; Liu J; Qi D; Lu N; Qin W
    J Phys Chem Lett; 2022 Mar; 13(9):2117-2123. PubMed ID: 35226493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are Mixed-Halide Ruddlesden-Popper Perovskites Really Mixed?
    Toso S; Gushchina I; Oliver AG; Manna L; Kuno M
    ACS Energy Lett; 2022 Dec; 7(12):4242-4247. PubMed ID: 36531145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the role of hydrogen bromide in the growth of cesium lead bromide perovskite nanocrystals.
    Cao J; Wang Q; Li W; Yan C; Zeng X; Gao Y; Zheng X; Lu J; Yang W
    J Colloid Interface Sci; 2022 Nov; 626():591-598. PubMed ID: 35809447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-scale visualization of metallic lead leak related fine structure in CsPbBr
    Liu X; Wang J; Ma C; Huang X; Liu K; Xu Z; Wang W; Wang L; Bai X
    Nanoscale; 2021 Jan; 13(1):124-130. PubMed ID: 33326538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic-Cation Pseudohalide 2D Cs
    Liao CH; Chen CH; Bing J; Bailey C; Lin YT; Pandit TM; Granados L; Zheng J; Tang S; Lin BH; Yen HW; McCamey DR; Kennedy BJ; Chueh CC; Ho-Baillie AWY
    Adv Mater; 2022 Feb; 34(7):e2104782. PubMed ID: 34866252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.