These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 33885447)

  • 1. Propulsion of an elastic filament in a shear-thinning fluid.
    Qin K; Peng Z; Chen Y; Nganguia H; Zhu L; Pak OS
    Soft Matter; 2021 Apr; 17(14):3829-3839. PubMed ID: 33885447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swimming efficiency in a shear-thinning fluid.
    Nganguia H; Pietrzyk K; Pak OS
    Phys Rev E; 2017 Dec; 96(6-1):062606. PubMed ID: 29347300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastohydrodynamic propulsion of a filament magnetically driven at both ends.
    Gürbüz A; Qin K; Abbott JJ; Pak OS
    Soft Matter; 2023 Sep; 19(37):7100-7108. PubMed ID: 37681748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase-separation models for swimming enhancement in complex fluids.
    Man Y; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023004. PubMed ID: 26382500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Reversible Swimming of Magnetically Assembled "Microscallops" in Non-Newtonian Fluids.
    Han K; Shields CW; Bharti B; Arratia PE; Velev OD
    Langmuir; 2020 Jun; 36(25):7148-7154. PubMed ID: 32011137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-amplitude swimmers can self-propel faster in viscoelastic fluids.
    Riley EE; Lauga E
    J Theor Biol; 2015 Oct; 382():345-55. PubMed ID: 26163369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Swimming by reciprocal motion at low Reynolds number.
    Qiu T; Lee TC; Mark AG; Morozov KI; Münster R; Mierka O; Turek S; Leshansky AM; Fischer P
    Nat Commun; 2014 Nov; 5():5119. PubMed ID: 25369018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of non-Newtonian behavior of blood on flow in an elastic artery model.
    Dutta A; Tarbell JM
    J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A shear-rate-dependent flow generated via magnetically controlled metachronal motion of artificial cilia.
    Wu A; Abbas SZ; Asghar Z; Sun H; Waqas M; Khan WA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1713-1724. PubMed ID: 32056033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Impact of Rheology on Viscous Oil Displacement by Polymers Analyzed by Pore-Scale Network Modelling.
    Salmo IC; Sorbie KS; Skauge A
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33924518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion.
    Han E; Zhu L; Shaevitz JW; Stone HA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired propulsion of micro-swimmers within a passive cervix filled with couple stress mucus.
    Asghar Z; Ali N; Javid K; Waqas M; Dogonchi AS; Khan WA
    Comput Methods Programs Biomed; 2020 Jun; 189():105313. PubMed ID: 31982669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria-inspired magnetically actuated rod-like soft robot in viscous fluids.
    Bhattacharjee A; Jabbarzadeh M; Kararsiz G; Fu HC; Kim MJ
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35926485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Impact of Different Arrangements of Molecular Chains in Terms of Low and High Shear Rate's Viscosities on Heat and Mass Flow of Nonnewtonian Shear thinning Fluids.
    Hassan M; Faisal A; Javid K; Khan S; Ahmad A; Khan R
    Comb Chem High Throughput Screen; 2022; 25(7):1115-1126. PubMed ID: 34554900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid.
    Liu R; Liu QS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066318. PubMed ID: 23005217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotational propulsion enabled by inertia.
    Nadal F; Pak OS; Zhu L; Brandt L; Lauga E
    Eur Phys J E Soft Matter; 2014 Jul; 37(7):16. PubMed ID: 25034393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.