These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33885480)

  • 21. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong Plasmon-Exciton Coupling in Ag Nanoparticle-Conjugated Polymer Core-Shell Hybrid Nanostructures.
    Petoukhoff CE; Dani KM; O'Carroll DM
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32961735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purified plasmonic lasing with strong polarization selectivity by reflection.
    Li G; Liu X; Wang X; Yuan Y; Sum TC; Xiong Q
    Opt Express; 2015 Jun; 23(12):15657-69. PubMed ID: 26193545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photoluminescence of ZnO nanocrystals embedded in BaF2 matrices by magnetron sputtering.
    Zang CH; Liu YC; Mu R; Zhao DX; Zhang JY; Ma JG; Lu YM; Yao B; Shen DZ; Fan XW
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1160-4. PubMed ID: 18468116
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lasing action in strongly coupled plasmonic nanocavity arrays.
    Zhou W; Dridi M; Suh JY; Kim CH; Co DT; Wasielewski MR; Schatz GC; Odom TW
    Nat Nanotechnol; 2013 Jul; 8(7):506-11. PubMed ID: 23770807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasmonic bowtie nanolaser arrays.
    Suh JY; Kim CH; Zhou W; Huntington MD; Co DT; Wasielewski MR; Odom TW
    Nano Lett; 2012 Nov; 12(11):5769-74. PubMed ID: 23013283
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZnO Nanowires on Single-Crystalline Aluminum Film Coupled with an Insulating WO
    Agarwal A; Tien WY; Huang YS; Mishra R; Cheng CW; Gwo S; Lu MY; Chen LJ
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32867049
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exciton Recombination, Energy-, and Charge Transfer in Single- and Multilayer Quantum-Dot Films on Silver Plasmonic Resonators.
    Shin T; Cho KS; Yun DJ; Kim J; Li XS; Moon ES; Baik CW; Il Kim S; Kim M; Choi JH; Park GS; Shin JK; Hwang S; Jung TS
    Sci Rep; 2016 May; 6():26204. PubMed ID: 27184469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlating Nanoscopic Energy Transfer and Far-Field Emission to Unravel Lasing Dynamics in Plasmonic Nanocavity Arrays.
    Deeb C; Guo Z; Yang A; Huang L; Odom TW
    Nano Lett; 2018 Feb; 18(2):1454-1459. PubMed ID: 29369639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-Temperature Gate Voltage Modulation of Plasmonic Nanolasers.
    Huang ZT; Chien TW; Cheng CW; Li CC; Chen KP; Gwo S; Lu TC
    ACS Nano; 2023 Apr; 17(7):6488-6496. PubMed ID: 36989057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polarization-Dependent Lasing Behavior from Low-Symmetry Nanocavity Arrays.
    Knudson MP; Li R; Wang D; Wang W; Schaller RD; Odom TW
    ACS Nano; 2019 Jul; 13(7):7435-7441. PubMed ID: 30938987
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable, high-performance sodium-based plasmonic devices in the near infrared.
    Wang Y; Yu J; Mao YF; Chen J; Wang S; Chen HZ; Zhang Y; Wang SY; Chen X; Li T; Zhou L; Ma RM; Zhu S; Cai W; Zhu J
    Nature; 2020 May; 581(7809):401-405. PubMed ID: 32461649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent Progress in Nanolaser Technology.
    Jeong KY; Hwang MS; Kim J; Park JS; Lee JM; Park HG
    Adv Mater; 2020 Dec; 32(51):e2001996. PubMed ID: 32945000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Design and Research of a New Hybrid Surface Plasmonic Waveguide Nanolaser.
    Liu Y; Li F; Xu C; He Z; Gao J; Zhou Y; Xu L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33926014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Manipulating the light-matter interactions in plasmonic nanocavities at 1 nm spatial resolution.
    Wen BY; Wang JY; Shen TL; Zhu ZW; Guan PC; Lin JS; Peng W; Cai WW; Jin H; Xu QC; Yang ZL; Tian ZQ; Li JF
    Light Sci Appl; 2022 Jul; 11(1):235. PubMed ID: 35882840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lasing in plasmon-induced transparency nanocavity.
    Deng ZL; Dong JW
    Opt Express; 2013 Aug; 21(17):20291-302. PubMed ID: 24105575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inducing lasing in organic materials with low optical gain by three-dimensional plasmonic nanocavity arrays.
    Han C; Qi Y; Wang Y; Ye J
    Opt Express; 2019 Jul; 27(15):20597-20607. PubMed ID: 31510150
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mimicking plasmonic nanolaser emission by selective extraction of electromagnetic near-field from photonic microcavity.
    Deng Q; Kang M; Zheng D; Zhang S; Xu H
    Nanoscale; 2018 Apr; 10(16):7431-7439. PubMed ID: 29637981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasmon-enhanced strong exciton-polariton coupling in single microwire-based heterojunction light-emitting diodes.
    Kan C; Wu Y; Xu J; Wan P; Jiang M
    Opt Express; 2021 Jan; 29(2):1023-1036. PubMed ID: 33726325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Full-Spectrum Analysis of Perovskite-Based Surface Plasmon Nanolasers.
    Cheng PJ; Zheng QY; Hsu CY; Li H; Hong KB; Zhu Y; Cui Q; Xu C; Lu TC; Lin TR
    Nanoscale Res Lett; 2020 Mar; 15(1):66. PubMed ID: 32227260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.