These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 33885492)

  • 1. In situ investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering.
    Appel C; Kuttich B; Kraus T; Stühn B
    Nanoscale; 2021 Apr; 13(14):6916-6920. PubMed ID: 33885492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible magnetism switching of iron oxide nanoparticle dispersions by controlled agglomeration.
    Müssig S; Kuttich B; Fidler F; Haddad D; Wintzheimer S; Kraus T; Mandel K
    Nanoscale Adv; 2021 May; 3(10):2822-2829. PubMed ID: 36134194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-dominated temperature dependence of agglomeration kinetics and morphology in alkyl-thiol-coated gold nanoparticles.
    Born P; Kraus T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062313. PubMed ID: 23848681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soft- and hard-agglomerate aerosols made at high temperatures.
    Tsantilis S; Pratsinis SE
    Langmuir; 2004 Jul; 20(14):5933-9. PubMed ID: 16459612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-pressure liquid dispersion and fragmentation of flame-made silica agglomerates.
    Wengeler R; Teleki A; Vetter M; Pratsinis SE; Nirschl H
    Langmuir; 2006 May; 22(11):4928-35. PubMed ID: 16700577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Solubility and Agglomeration of Apolar Nanoparticles in Different Solvents.
    Doblas D; Kister T; Cano-Bonilla M; González-García L; Kraus T
    Nano Lett; 2019 Aug; 19(8):5246-5252. PubMed ID: 31251877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical modeling and
    Wu X; Choe H; Strayer J; Gómez-Pastora J; Zborowski M; Wyslouzil B; Chalmers J
    Nanoscale; 2024 Apr; 16(14):7041-7057. PubMed ID: 38444246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peering into the Formation of Cerium Oxide Colloidal Particles in Solution by In Situ Small-Angle X-ray Scattering.
    Özkan E; Badaczewski F; Cop P; Werner S; Hofmann A; Votsmeier M; Amenitsch H; Smarsly BM
    Langmuir; 2020 Aug; 36(31):9175-9190. PubMed ID: 32659089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling agglomeration and deagglomeration in aqueous colloidal dispersions of very small tin dioxide nanoparticles.
    Mackert V; Schroer MA; Winterer M
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2681-2693. PubMed ID: 34838316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed Laser Ablation-Induced Green Synthesis of TiO
    Singh A; Vihinen J; Frankberg E; Hyvärinen L; Honkanen M; Levänen E
    Nanoscale Res Lett; 2016 Dec; 11(1):447. PubMed ID: 27709559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals.
    Lalatonne Y; Richardi J; Pileni MP
    Nat Mater; 2004 Feb; 3(2):121-5. PubMed ID: 14730356
    [TBL] [Abstract][Full Text] [Related]  

  • 12. When Like Destabilizes Like: Inverted Solvent Effects in Apolar Nanoparticle Dispersions.
    Monego D; Kister T; Kirkwood N; Doblas D; Mulvaney P; Kraus T; Widmer-Cooper A
    ACS Nano; 2020 May; 14(5):5278-5287. PubMed ID: 32298080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional nature of fluidized nanoparticle agglomerates.
    de Martín L; Bouwman WG; van Ommen JR
    Langmuir; 2014 Oct; 30(42):12696-702. PubMed ID: 25313446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of silver nanoparticle formation and agglomeration inside the cavitation bubble after pulsed laser ablation in liquid.
    Wagener P; Ibrahimkutty S; Menzel A; Plech A; Barcikowski S
    Phys Chem Chem Phys; 2013 Mar; 15(9):3068-74. PubMed ID: 23183423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Stability of Apolar Nanoparticles: The Role of Particle Size and Ligand Shell Structure.
    Kister T; Monego D; Mulvaney P; Widmer-Cooper A; Kraus T
    ACS Nano; 2018 Jun; 12(6):5969-5977. PubMed ID: 29842786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly versatile laboratory X-ray scattering instrument enabling (nano-)material structure analysis on multiple length scales by covering a scattering vector range of almost five decades.
    Bolze J; Gateshki M
    Rev Sci Instrum; 2019 Dec; 90(12):123103. PubMed ID: 31893848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the Nanostructure and Arrangement of Bacterial Magnetosomes by Small-Angle X-Ray Scattering.
    Rosenfeldt S; Riese CN; Mickoleit F; Schüler D; Schenk AS
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterisation of alkyl amine-capped zinc sulphide nanoparticles.
    Kremser G; Rath T; Kunert B; Edler M; Fritz-Popovski G; Resel R; Letofsky-Papst I; Grogger W; Trimmel G
    J Colloid Interface Sci; 2012 Mar; 369(1):154-9. PubMed ID: 22239986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolving the growth of 3D colloidal nanoparticle superlattices by real-time small-angle X-ray scattering.
    Lu C; Akey AJ; Dahlman CJ; Zhang D; Herman IP
    J Am Chem Soc; 2012 Nov; 134(45):18732-8. PubMed ID: 23034055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Watching nanoparticles form: an in situ (small-/wide-angle X-ray scattering/total scattering) study of the growth of yttria-stabilised zirconia in supercritical fluids.
    Tyrsted C; Pauw BR; Jensen KM; Becker J; Christensen M; Iversen BB
    Chemistry; 2012 Apr; 18(18):5759-66. PubMed ID: 22447391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.