These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33885536)
1. Thermo-enhanced upconversion luminescence in inert-core/active-shell UCNPs: the inert core matters. Zhou Y; Cheng Y; Xu J; Lin H; Wang Y Nanoscale; 2021 Apr; 13(13):6569-6576. PubMed ID: 33885536 [TBL] [Abstract][Full Text] [Related]
2. Heterogeneous Oxysulfide@Fluoride Core/Shell Nanocrystals for Upconversion-Based Nanothermometry. Zou Q; Marcelot C; Ratel-Ramond N; Yi X; Roblin P; Frenzel F; Resch-Genger U; Eftekhari A; Bouchet A; Coudret C; Verelst M; Chen X; Mauricot R; Roux C ACS Nano; 2022 Aug; 16(8):12107-12117. PubMed ID: 35862666 [TBL] [Abstract][Full Text] [Related]
3. Intense Red-Emitting Upconversion Nanophosphors (800 nm-Driven) with a Core/Double-Shell Structure for Dual-Modal Upconversion Luminescence and Magnetic Resonance in Vivo Imaging Applications. Hong AR; Kim Y; Lee TS; Kim S; Lee K; Kim G; Jang HS ACS Appl Mater Interfaces; 2018 Apr; 10(15):12331-12340. PubMed ID: 29546978 [TBL] [Abstract][Full Text] [Related]
4. Opposite luminescence thermal behavior of upconversion core/shell nanocrystals for anticounterfeiting. Hu Y; Yu S; Deng X; Zhou J; Zhang R; Shao Q Nanoscale; 2023 Oct; 15(38):15552-15557. PubMed ID: 37721010 [TBL] [Abstract][Full Text] [Related]
5. CaGdF Xie X; Wang W; Chen H; Yang R; Wu H; Gan D; Li B; Kong X; Li Q; Chang Y RSC Adv; 2023 Mar; 13(13):8535-8539. PubMed ID: 36926301 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic Chiral Metasurface-Induced Upconverted Circularly Polarized Luminescence from Achiral Upconversion Nanoparticles. He H; Cen M; Wang J; Xu Y; Liu J; Cai W; Kong D; Li K; Luo D; Cao T; Liu YJ ACS Appl Mater Interfaces; 2022 Dec; 14(48):53981-53989. PubMed ID: 36378812 [TBL] [Abstract][Full Text] [Related]
7. Enhanced upconversion luminescence intensity of core-shell NaYF Kang N; Zhao J; Zhou Y; Ai C; Wang X; Ren L Nanotechnology; 2019 Mar; 30(10):105701. PubMed ID: 30593009 [TBL] [Abstract][Full Text] [Related]
8. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging. Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512 [TBL] [Abstract][Full Text] [Related]
9. Core-shell-shell heterostructures of α-NaLuF4:Yb/Er@NaLuF4:Yb@MF2 (M = Ca, Sr, Ba) with remarkably enhanced upconversion luminescence. Su Y; Liu X; Lei P; Xu X; Dong L; Guo X; Yan X; Wang P; Song S; Feng J; Zhang H Dalton Trans; 2016 Jul; 45(27):11129-36. PubMed ID: 27327414 [TBL] [Abstract][Full Text] [Related]
10. Enhanced Upconversion Luminescence in Yb Qiu H; Yang C; Shao W; Damasco J; Wang X; Ågren H; Prasad PN; Chen G Nanomaterials (Basel); 2014 Jan; 4(1):55-68. PubMed ID: 28348285 [TBL] [Abstract][Full Text] [Related]
12. A protected excitation-energy reservoir for efficient upconversion luminescence. Huang K; Liu H; Kraft M; Shikha S; Zheng X; Ågren H; Würth C; Resch-Genger U; Zhang Y Nanoscale; 2017 Dec; 10(1):250-259. PubMed ID: 29210408 [TBL] [Abstract][Full Text] [Related]
13. Single upconversion nanoparticle imaging at sub-10 W cm Liu Q; Zhang Y; Peng CS; Yang T; Joubert LM; Chu S Nat Photonics; 2018 Sep; 12(9):548-553. PubMed ID: 31258619 [TBL] [Abstract][Full Text] [Related]
14. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells. Yang L; Zhang K; Bi S; Zhu JJ ACS Appl Mater Interfaces; 2019 Oct; 11(42):38459-38466. PubMed ID: 31593426 [TBL] [Abstract][Full Text] [Related]
15. Rapid Synthesis of Sub-10 nm Hexagonal NaYF Hesse J; Klier DT; Sgarzi M; Nsubuga A; Bauer C; Grenzer J; Hübner R; Wislicenus M; Joshi T; Kumke MU; Stephan H ChemistryOpen; 2018 Feb; 7(2):159-168. PubMed ID: 29435401 [TBL] [Abstract][Full Text] [Related]
16. Energy transfer mechanism dominated by the doping location of activators in rare-earth upconversion nanoparticles. Sun L; Li L; Gao R; Tang K; Fu L; Ai XC; Zhang JP Phys Chem Chem Phys; 2018 Jun; 20(25):17141-17147. PubMed ID: 29897366 [TBL] [Abstract][Full Text] [Related]
17. Combating Concentration Quenching in Upconversion Nanoparticles. Chen B; Wang F Acc Chem Res; 2020 Feb; 53(2):358-367. PubMed ID: 31633900 [TBL] [Abstract][Full Text] [Related]
18. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature. Shao Q; Zhang G; Ouyang L; Hu Y; Dong Y; Jiang J Nanoscale; 2017 Aug; 9(33):12132-12141. PubMed ID: 28805873 [TBL] [Abstract][Full Text] [Related]
19. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Shen B; Cheng S; Gu Y; Ni D; Gao Y; Su Q; Feng W; Li F Nanoscale; 2017 Feb; 9(5):1964-1971. PubMed ID: 28098332 [TBL] [Abstract][Full Text] [Related]
20. The Combination of Upconversion Nanoparticles and Perovskite Quantum Dots with Temperature-Dependent Emission Colors for Dual-Mode Anti-Counterfeiting Applications. Zhang Q; Gao Y; Cheng L; Li Y; Xu S; Chen B Nanomaterials (Basel); 2023 Dec; 13(24):. PubMed ID: 38132999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]