These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33885769)
1. Divergent Gene Expression Following Duplication of Meiotic Genes in the Stick Insect Clitarchus hookeri. Wu C; Twort VG; Newcomb RD; Buckley TR Genome Biol Evol; 2021 May; 13(5):. PubMed ID: 33885769 [TBL] [Abstract][Full Text] [Related]
2. Assembling large genomes: analysis of the stick insect (Clitarchus hookeri) genome reveals a high repeat content and sex-biased genes associated with reproduction. Wu C; Twort VG; Crowhurst RN; Newcomb RD; Buckley TR BMC Genomics; 2017 Nov; 18(1):884. PubMed ID: 29145825 [TBL] [Abstract][Full Text] [Related]
3. De Novo Transcriptome Analysis of the Common New Zealand Stick Insect Clitarchus hookeri (Phasmatodea) Reveals Genes Involved in Olfaction, Digestion and Sexual Reproduction. Wu C; Crowhurst RN; Dennis AB; Twort VG; Liu S; Newcomb RD; Ross HA; Buckley TR PLoS One; 2016; 11(6):e0157783. PubMed ID: 27336743 [TBL] [Abstract][Full Text] [Related]
4. Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. Schurko AM; Logsdon JM; Eads BD BMC Evol Biol; 2009 Apr; 9():78. PubMed ID: 19383157 [TBL] [Abstract][Full Text] [Related]
5. Geographic parthenogenesis and the common tea-tree stick insect of New Zealand. Morgan-Richards M; Trewick SA; Stringer IA Mol Ecol; 2010 Mar; 19(6):1227-38. PubMed ID: 20163549 [TBL] [Abstract][Full Text] [Related]
6. De novo transcriptome analysis for examination of the nutrition metabolic system related to the evolutionary process through which stick insects gain the ability of flight (Phasmatodea). Sakamoto T; Sasaki S; Yamaguchi N; Nakano M; Sato H; Iwabuchi K; Tabunoki H; Simpson RJ; Bono H BMC Res Notes; 2021 May; 14(1):182. PubMed ID: 33985569 [TBL] [Abstract][Full Text] [Related]
7. Investigating hybridization in the parthenogenetic New Zealand stick insect Acanthoxyla (Phasmatodea) using single-copy nuclear loci. Buckley TR; Attanayake D; Park D; Ravindran S; Jewell TR; Normark BB Mol Phylogenet Evol; 2008 Jul; 48(1):335-49. PubMed ID: 18367411 [TBL] [Abstract][Full Text] [Related]
8. Development of microsatellite markers for the geographically parthenogenetic stick insect Phraortes elongatus (Insecta: Phasmatodea). Nozaki T; Suetsugu K; Sato K; Sato R; Takagi T; Funaki S; Ito K; Kurita K; Isagi Y; Kaneko S Genes Genet Syst; 2021 Dec; 96(4):199-203. PubMed ID: 34483152 [TBL] [Abstract][Full Text] [Related]
9. Gene expression analysis of parthenogenetic embryonic development of the pea aphid, Acyrthosiphon pisum, suggests that aphid parthenogenesis evolved from meiotic oogenesis. Srinivasan DG; Abdelhady A; Stern DL PLoS One; 2014; 9(12):e115099. PubMed ID: 25501006 [TBL] [Abstract][Full Text] [Related]
10. Loss and gain of sexual reproduction in the same stick insect. Morgan-Richards M; Langton-Myers SS; Trewick SA Mol Ecol; 2019 Sep; 28(17):3929-3941. PubMed ID: 31386772 [TBL] [Abstract][Full Text] [Related]
11. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects. Jiang F; Liu Q; Wang Y; Zhang J; Wang H; Song T; Yang M; Wang X; Kang L Gigascience; 2017 Jun; 6(6):1-16. PubMed ID: 28444351 [TBL] [Abstract][Full Text] [Related]
12. The Transcriptomic Signature of Cyclical Parthenogenesis. Huynh TV; Hall AS; Xu S Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37392457 [TBL] [Abstract][Full Text] [Related]
13. Inventory and phylogenomic distribution of meiotic genes in Nasonia vitripennis and among diverse arthropods. Schurko AM; Mazur DJ; Logsdon JM Insect Mol Biol; 2010 Feb; 19 Suppl 1():165-80. PubMed ID: 20167026 [TBL] [Abstract][Full Text] [Related]
14. Revision of the stick insect genus Clitarchus Stål (Phasmatodea: Phasmatidae): new synonymies and two new species from northern New Zealand. Buckley TR; Myers SS; Bradler S Zootaxa; 2014 Dec; 3900(4):451-82. PubMed ID: 25543751 [TBL] [Abstract][Full Text] [Related]
15. Evolution of Neuropeptide Precursors in Polyneoptera (Insecta). Bläser M; Predel R Front Endocrinol (Lausanne); 2020; 11():197. PubMed ID: 32373067 [TBL] [Abstract][Full Text] [Related]
16. Differential expression of endogenous plant cell wall degrading enzyme genes in the stick insect (Phasmatodea) midgut. Shelomi M; Jasper WC; Atallah J; Kimsey LS; Johnson BR BMC Genomics; 2014 Oct; 15(1):917. PubMed ID: 25331961 [TBL] [Abstract][Full Text] [Related]
17. Inventory and phylogenetic analysis of meiotic genes in monogonont rotifers. Hanson SJ; Schurko AM; Hecox-Lea B; Welch DB; Stelzer CP; Logsdon JM J Hered; 2013; 104(3):357-70. PubMed ID: 23487324 [TBL] [Abstract][Full Text] [Related]
18. Tubulin evolution in insects: gene duplication and subfunctionalization provide specialized isoforms in a functionally constrained gene family. Nielsen MG; Gadagkar SR; Gutzwiller L BMC Evol Biol; 2010 Apr; 10():113. PubMed ID: 20423510 [TBL] [Abstract][Full Text] [Related]
19. Parthenogenetic Females of the Stick Insect Nakano M; Morgan-Richards M; Godfrey AJR; Clavijo McCormick A Insects; 2019 Jul; 10(7):. PubMed ID: 31295894 [TBL] [Abstract][Full Text] [Related]
20. Parthenogenetic Stick Insects Exhibit Signatures of Preservation in the Molecular Architecture of Male Reproduction. Forni G; Mantovani B; Mikheyev AS; Luchetti A Genome Biol Evol; 2024 May; 16(5):. PubMed ID: 38573594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]