These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 33885958)
1. Deep learning-based denoising algorithm in comparison to iterative reconstruction and filtered back projection: a 12-reader phantom study. Kim Y; Oh DY; Chang W; Kang E; Ye JC; Lee K; Kim HY; Kim YH; Park JH; Lee YJ; Lee KH Eur Radiol; 2021 Nov; 31(11):8755-8764. PubMed ID: 33885958 [TBL] [Abstract][Full Text] [Related]
2. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm. Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528 [TBL] [Abstract][Full Text] [Related]
3. Low-contrast lesion detection in neck CT: a multireader study comparing deep learning, iterative, and filtered back projection reconstructions using realistic phantoms. Bellmann Q; Peng Y; Genske U; Yan L; Wagner M; Jahnke P Eur Radiol Exp; 2024 Jul; 8(1):84. PubMed ID: 39046565 [TBL] [Abstract][Full Text] [Related]
4. Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability. Solomon J; Wilson J; Samei E Med Phys; 2015 Aug; 42(8):4941-53. PubMed ID: 26233220 [TBL] [Abstract][Full Text] [Related]
5. Comparative performance analysis for abdominal phantom ROI detectability according to CT reconstruction algorithm: ADMIRE. Shin JB; Yoon DK; Pak S; Kwon YH; Suh TS J Appl Clin Med Phys; 2020 Jan; 21(1):136-143. PubMed ID: 31729832 [TBL] [Abstract][Full Text] [Related]
6. Detectability of Small Low-Attenuation Lesions With Deep Learning CT Image Reconstruction: A 24-Reader Phantom Study. Toia GV; Zamora DA; Singleton M; Liu A; Tan E; Leng S; Shuman WP; Kanal KM; Mileto A AJR Am J Roentgenol; 2023 Feb; 220(2):283-295. PubMed ID: 36129222 [No Abstract] [Full Text] [Related]
7. Impact of an artificial intelligence deep-learning reconstruction algorithm for CT on image quality and potential dose reduction: A phantom study. Greffier J; Si-Mohamed S; Frandon J; Loisy M; de Oliveira F; Beregi JP; Dabli D Med Phys; 2022 Aug; 49(8):5052-5063. PubMed ID: 35696272 [TBL] [Abstract][Full Text] [Related]
8. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction. Eck BL; Fahmi R; Brown KM; Zabic S; Raihani N; Miao J; Wilson DL Med Phys; 2015 Oct; 42(10):6098-111. PubMed ID: 26429285 [TBL] [Abstract][Full Text] [Related]
9. Dose reduction potential of vendor-agnostic deep learning model in comparison with deep learning-based image reconstruction algorithm on CT: a phantom study. Choi H; Chang W; Kim JH; Ahn C; Lee H; Kim HY; Cho J; Lee YJ; Kim YH Eur Radiol; 2022 Feb; 32(2):1247-1255. PubMed ID: 34390372 [TBL] [Abstract][Full Text] [Related]
10. Noise and spatial resolution properties of a commercially available deep learning-based CT reconstruction algorithm. Solomon J; Lyu P; Marin D; Samei E Med Phys; 2020 Sep; 47(9):3961-3971. PubMed ID: 32506661 [TBL] [Abstract][Full Text] [Related]
11. Low contrast detectability and spatial resolution with model-based Iterative reconstructions of MDCT images: a phantom and cadaveric study. Millon D; Vlassenbroek A; Van Maanen AG; Cambier SE; Coche EE Eur Radiol; 2017 Mar; 27(3):927-937. PubMed ID: 27300195 [TBL] [Abstract][Full Text] [Related]
12. Is it possible to use low-dose deep learning reconstruction for the detection of liver metastases on CT routinely? Lyu P; Liu N; Harrawood B; Solomon J; Wang H; Chen Y; Rigiroli F; Ding Y; Schwartz FR; Jiang H; Lowry C; Wang L; Samei E; Gao J; Marin D Eur Radiol; 2023 Mar; 33(3):1629-1640. PubMed ID: 36323984 [TBL] [Abstract][Full Text] [Related]
13. Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Greffier J; Hamard A; Pereira F; Barrau C; Pasquier H; Beregi JP; Frandon J Eur Radiol; 2020 Jul; 30(7):3951-3959. PubMed ID: 32100091 [TBL] [Abstract][Full Text] [Related]
14. "Image quality evaluation of the Precise image CT deep learning reconstruction algorithm compared to Filtered Back-projection and iDose Barca P; Domenichelli S; Golfieri R; Pierotti L; Spagnoli L; Tomasi S; Strigari L Phys Med; 2023 Feb; 106():102517. PubMed ID: 36669326 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of low-dose CT with spectral shaping and third-generation iterative reconstruction in evaluating interstitial lung diseases associated with connective tissue disease: an intra-individual comparison study. Xu X; Sui X; Song L; Huang Y; Ge Y; Jin Z; Song W Eur Radiol; 2019 Sep; 29(9):4529-4537. PubMed ID: 30737567 [TBL] [Abstract][Full Text] [Related]
16. Improving Low-contrast Detectability and Noise Texture Pattern for Computed Tomography Using Iterative Reconstruction Accelerated with Machine Learning Method: A Phantom Study. Funama Y; Takahashi H; Goto T; Aoki Y; Yoshida R; Kumagai Y; Awai K Acad Radiol; 2020 Jul; 27(7):929-936. PubMed ID: 31918961 [TBL] [Abstract][Full Text] [Related]
17. Deep learning versus iterative reconstruction on image quality and dose reduction in abdominal CT: a live animal study. Zhang JZ; Ganesh H; Raslau FD; Nair R; Escott E; Wang C; Wang G; Zhang J Phys Med Biol; 2022 Jul; 67(14):. PubMed ID: 35709707 [No Abstract] [Full Text] [Related]
18. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
19. Impact of advanced modeled iterative reconstruction on interreader agreement in coronary artery measurements. Gassenmaier T; Distelmaier I; Weng AM; Bley TA; Klink T Eur J Radiol; 2017 Sep; 94():201-208. PubMed ID: 28712701 [TBL] [Abstract][Full Text] [Related]
20. Diagnostic Performance of an Advanced Modeled Iterative Reconstruction Algorithm for Low-Contrast Detectability with a Third-Generation Dual-Source Multidetector CT Scanner: Potential for Radiation Dose Reduction in a Multireader Study. Solomon J; Mileto A; Ramirez-Giraldo JC; Samei E Radiology; 2015 Jun; 275(3):735-45. PubMed ID: 25751228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]